Step |
Hyp |
Ref |
Expression |
1 |
|
vmcn.c |
|- C = ( IndMet ` U ) |
2 |
|
vmcn.j |
|- J = ( MetOpen ` C ) |
3 |
|
vmcn.m |
|- M = ( -v ` U ) |
4 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
5 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
6 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
7 |
4 5 6 3
|
nvmfval |
|- ( U e. NrmCVec -> M = ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) ) |
8 |
4 1
|
imsxmet |
|- ( U e. NrmCVec -> C e. ( *Met ` ( BaseSet ` U ) ) ) |
9 |
2
|
mopntopon |
|- ( C e. ( *Met ` ( BaseSet ` U ) ) -> J e. ( TopOn ` ( BaseSet ` U ) ) ) |
10 |
8 9
|
syl |
|- ( U e. NrmCVec -> J e. ( TopOn ` ( BaseSet ` U ) ) ) |
11 |
10 10
|
cnmpt1st |
|- ( U e. NrmCVec -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> x ) e. ( ( J tX J ) Cn J ) ) |
12 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
13 |
12
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
14 |
13
|
a1i |
|- ( U e. NrmCVec -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
15 |
|
neg1cn |
|- -u 1 e. CC |
16 |
15
|
a1i |
|- ( U e. NrmCVec -> -u 1 e. CC ) |
17 |
10 10 14 16
|
cnmpt2c |
|- ( U e. NrmCVec -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> -u 1 ) e. ( ( J tX J ) Cn ( TopOpen ` CCfld ) ) ) |
18 |
10 10
|
cnmpt2nd |
|- ( U e. NrmCVec -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> y ) e. ( ( J tX J ) Cn J ) ) |
19 |
1 2 6 12
|
smcn |
|- ( U e. NrmCVec -> ( .sOLD ` U ) e. ( ( ( TopOpen ` CCfld ) tX J ) Cn J ) ) |
20 |
10 10 17 18 19
|
cnmpt22f |
|- ( U e. NrmCVec -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( -u 1 ( .sOLD ` U ) y ) ) e. ( ( J tX J ) Cn J ) ) |
21 |
1 2 5
|
vacn |
|- ( U e. NrmCVec -> ( +v ` U ) e. ( ( J tX J ) Cn J ) ) |
22 |
10 10 11 20 21
|
cnmpt22f |
|- ( U e. NrmCVec -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) e. ( ( J tX J ) Cn J ) ) |
23 |
7 22
|
eqeltrd |
|- ( U e. NrmCVec -> M e. ( ( J tX J ) Cn J ) ) |