Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | vnex | |- -. E. x x = _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset | |- -. E. x A. y y e. x |
|
2 | vex | |- y e. _V |
|
3 | 2 | tbt | |- ( y e. x <-> ( y e. x <-> y e. _V ) ) |
4 | 3 | albii | |- ( A. y y e. x <-> A. y ( y e. x <-> y e. _V ) ) |
5 | dfcleq | |- ( x = _V <-> A. y ( y e. x <-> y e. _V ) ) |
|
6 | 4 5 | bitr4i | |- ( A. y y e. x <-> x = _V ) |
7 | 6 | exbii | |- ( E. x A. y y e. x <-> E. x x = _V ) |
8 | 1 7 | mtbi | |- -. E. x x = _V |