| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volcn.1 |  |-  F = ( x e. RR |-> ( vol ` ( A i^i ( B [,] x ) ) ) ) | 
						
							| 2 |  | simpll |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> A e. dom vol ) | 
						
							| 3 |  | iccmbl |  |-  ( ( B e. RR /\ x e. RR ) -> ( B [,] x ) e. dom vol ) | 
						
							| 4 | 3 | adantll |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( B [,] x ) e. dom vol ) | 
						
							| 5 |  | inmbl |  |-  ( ( A e. dom vol /\ ( B [,] x ) e. dom vol ) -> ( A i^i ( B [,] x ) ) e. dom vol ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( A i^i ( B [,] x ) ) e. dom vol ) | 
						
							| 7 |  | mblvol |  |-  ( ( A i^i ( B [,] x ) ) e. dom vol -> ( vol ` ( A i^i ( B [,] x ) ) ) = ( vol* ` ( A i^i ( B [,] x ) ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol ` ( A i^i ( B [,] x ) ) ) = ( vol* ` ( A i^i ( B [,] x ) ) ) ) | 
						
							| 9 |  | inss2 |  |-  ( A i^i ( B [,] x ) ) C_ ( B [,] x ) | 
						
							| 10 |  | mblss |  |-  ( ( B [,] x ) e. dom vol -> ( B [,] x ) C_ RR ) | 
						
							| 11 | 4 10 | syl |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( B [,] x ) C_ RR ) | 
						
							| 12 |  | mblvol |  |-  ( ( B [,] x ) e. dom vol -> ( vol ` ( B [,] x ) ) = ( vol* ` ( B [,] x ) ) ) | 
						
							| 13 | 4 12 | syl |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol ` ( B [,] x ) ) = ( vol* ` ( B [,] x ) ) ) | 
						
							| 14 |  | iccvolcl |  |-  ( ( B e. RR /\ x e. RR ) -> ( vol ` ( B [,] x ) ) e. RR ) | 
						
							| 15 | 14 | adantll |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol ` ( B [,] x ) ) e. RR ) | 
						
							| 16 | 13 15 | eqeltrrd |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol* ` ( B [,] x ) ) e. RR ) | 
						
							| 17 |  | ovolsscl |  |-  ( ( ( A i^i ( B [,] x ) ) C_ ( B [,] x ) /\ ( B [,] x ) C_ RR /\ ( vol* ` ( B [,] x ) ) e. RR ) -> ( vol* ` ( A i^i ( B [,] x ) ) ) e. RR ) | 
						
							| 18 | 9 11 16 17 | mp3an2i |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol* ` ( A i^i ( B [,] x ) ) ) e. RR ) | 
						
							| 19 | 8 18 | eqeltrd |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol ` ( A i^i ( B [,] x ) ) ) e. RR ) | 
						
							| 20 | 19 1 | fmptd |  |-  ( ( A e. dom vol /\ B e. RR ) -> F : RR --> RR ) | 
						
							| 21 |  | simprr |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ ( y e. RR /\ e e. RR+ ) ) -> e e. RR+ ) | 
						
							| 22 |  | oveq12 |  |-  ( ( v = z /\ u = y ) -> ( v - u ) = ( z - y ) ) | 
						
							| 23 | 22 | ancoms |  |-  ( ( u = y /\ v = z ) -> ( v - u ) = ( z - y ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ( u = y /\ v = z ) -> ( abs ` ( v - u ) ) = ( abs ` ( z - y ) ) ) | 
						
							| 25 | 24 | breq1d |  |-  ( ( u = y /\ v = z ) -> ( ( abs ` ( v - u ) ) < e <-> ( abs ` ( z - y ) ) < e ) ) | 
						
							| 26 |  | fveq2 |  |-  ( v = z -> ( F ` v ) = ( F ` z ) ) | 
						
							| 27 |  | fveq2 |  |-  ( u = y -> ( F ` u ) = ( F ` y ) ) | 
						
							| 28 | 26 27 | oveqan12rd |  |-  ( ( u = y /\ v = z ) -> ( ( F ` v ) - ( F ` u ) ) = ( ( F ` z ) - ( F ` y ) ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( ( u = y /\ v = z ) -> ( abs ` ( ( F ` v ) - ( F ` u ) ) ) = ( abs ` ( ( F ` z ) - ( F ` y ) ) ) ) | 
						
							| 30 | 29 | breq1d |  |-  ( ( u = y /\ v = z ) -> ( ( abs ` ( ( F ` v ) - ( F ` u ) ) ) < e <-> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 31 | 25 30 | imbi12d |  |-  ( ( u = y /\ v = z ) -> ( ( ( abs ` ( v - u ) ) < e -> ( abs ` ( ( F ` v ) - ( F ` u ) ) ) < e ) <-> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) ) | 
						
							| 32 |  | oveq12 |  |-  ( ( v = y /\ u = z ) -> ( v - u ) = ( y - z ) ) | 
						
							| 33 | 32 | ancoms |  |-  ( ( u = z /\ v = y ) -> ( v - u ) = ( y - z ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( u = z /\ v = y ) -> ( abs ` ( v - u ) ) = ( abs ` ( y - z ) ) ) | 
						
							| 35 | 34 | breq1d |  |-  ( ( u = z /\ v = y ) -> ( ( abs ` ( v - u ) ) < e <-> ( abs ` ( y - z ) ) < e ) ) | 
						
							| 36 |  | fveq2 |  |-  ( v = y -> ( F ` v ) = ( F ` y ) ) | 
						
							| 37 |  | fveq2 |  |-  ( u = z -> ( F ` u ) = ( F ` z ) ) | 
						
							| 38 | 36 37 | oveqan12rd |  |-  ( ( u = z /\ v = y ) -> ( ( F ` v ) - ( F ` u ) ) = ( ( F ` y ) - ( F ` z ) ) ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( u = z /\ v = y ) -> ( abs ` ( ( F ` v ) - ( F ` u ) ) ) = ( abs ` ( ( F ` y ) - ( F ` z ) ) ) ) | 
						
							| 40 | 39 | breq1d |  |-  ( ( u = z /\ v = y ) -> ( ( abs ` ( ( F ` v ) - ( F ` u ) ) ) < e <-> ( abs ` ( ( F ` y ) - ( F ` z ) ) ) < e ) ) | 
						
							| 41 | 35 40 | imbi12d |  |-  ( ( u = z /\ v = y ) -> ( ( ( abs ` ( v - u ) ) < e -> ( abs ` ( ( F ` v ) - ( F ` u ) ) ) < e ) <-> ( ( abs ` ( y - z ) ) < e -> ( abs ` ( ( F ` y ) - ( F ` z ) ) ) < e ) ) ) | 
						
							| 42 |  | ssidd |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) -> RR C_ RR ) | 
						
							| 43 |  | recn |  |-  ( z e. RR -> z e. CC ) | 
						
							| 44 |  | recn |  |-  ( y e. RR -> y e. CC ) | 
						
							| 45 |  | abssub |  |-  ( ( z e. CC /\ y e. CC ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) | 
						
							| 46 | 43 44 45 | syl2anr |  |-  ( ( y e. RR /\ z e. RR ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) | 
						
							| 48 | 47 | breq1d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( abs ` ( z - y ) ) < e <-> ( abs ` ( y - z ) ) < e ) ) | 
						
							| 49 | 20 | adantr |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) -> F : RR --> RR ) | 
						
							| 50 |  | ffvelcdm |  |-  ( ( F : RR --> RR /\ y e. RR ) -> ( F ` y ) e. RR ) | 
						
							| 51 |  | ffvelcdm |  |-  ( ( F : RR --> RR /\ z e. RR ) -> ( F ` z ) e. RR ) | 
						
							| 52 | 50 51 | anim12dan |  |-  ( ( F : RR --> RR /\ ( y e. RR /\ z e. RR ) ) -> ( ( F ` y ) e. RR /\ ( F ` z ) e. RR ) ) | 
						
							| 53 | 49 52 | sylan |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( F ` y ) e. RR /\ ( F ` z ) e. RR ) ) | 
						
							| 54 |  | recn |  |-  ( ( F ` z ) e. RR -> ( F ` z ) e. CC ) | 
						
							| 55 |  | recn |  |-  ( ( F ` y ) e. RR -> ( F ` y ) e. CC ) | 
						
							| 56 |  | abssub |  |-  ( ( ( F ` z ) e. CC /\ ( F ` y ) e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) = ( abs ` ( ( F ` y ) - ( F ` z ) ) ) ) | 
						
							| 57 | 54 55 56 | syl2anr |  |-  ( ( ( F ` y ) e. RR /\ ( F ` z ) e. RR ) -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) = ( abs ` ( ( F ` y ) - ( F ` z ) ) ) ) | 
						
							| 58 | 53 57 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) = ( abs ` ( ( F ` y ) - ( F ` z ) ) ) ) | 
						
							| 59 | 58 | breq1d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e <-> ( abs ` ( ( F ` y ) - ( F ` z ) ) ) < e ) ) | 
						
							| 60 | 48 59 | imbi12d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) <-> ( ( abs ` ( y - z ) ) < e -> ( abs ` ( ( F ` y ) - ( F ` z ) ) ) < e ) ) ) | 
						
							| 61 |  | simpr2 |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> z e. RR ) | 
						
							| 62 |  | oveq2 |  |-  ( x = z -> ( B [,] x ) = ( B [,] z ) ) | 
						
							| 63 | 62 | ineq2d |  |-  ( x = z -> ( A i^i ( B [,] x ) ) = ( A i^i ( B [,] z ) ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( x = z -> ( vol ` ( A i^i ( B [,] x ) ) ) = ( vol ` ( A i^i ( B [,] z ) ) ) ) | 
						
							| 65 |  | fvex |  |-  ( vol ` ( A i^i ( B [,] z ) ) ) e. _V | 
						
							| 66 | 64 1 65 | fvmpt |  |-  ( z e. RR -> ( F ` z ) = ( vol ` ( A i^i ( B [,] z ) ) ) ) | 
						
							| 67 | 61 66 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` z ) = ( vol ` ( A i^i ( B [,] z ) ) ) ) | 
						
							| 68 |  | simplll |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> A e. dom vol ) | 
						
							| 69 |  | simplr |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) -> B e. RR ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> B e. RR ) | 
						
							| 71 |  | iccmbl |  |-  ( ( B e. RR /\ z e. RR ) -> ( B [,] z ) e. dom vol ) | 
						
							| 72 | 70 61 71 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( B [,] z ) e. dom vol ) | 
						
							| 73 |  | inmbl |  |-  ( ( A e. dom vol /\ ( B [,] z ) e. dom vol ) -> ( A i^i ( B [,] z ) ) e. dom vol ) | 
						
							| 74 | 68 72 73 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] z ) ) e. dom vol ) | 
						
							| 75 |  | mblvol |  |-  ( ( A i^i ( B [,] z ) ) e. dom vol -> ( vol ` ( A i^i ( B [,] z ) ) ) = ( vol* ` ( A i^i ( B [,] z ) ) ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol ` ( A i^i ( B [,] z ) ) ) = ( vol* ` ( A i^i ( B [,] z ) ) ) ) | 
						
							| 77 | 67 76 | eqtrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` z ) = ( vol* ` ( A i^i ( B [,] z ) ) ) ) | 
						
							| 78 |  | simpr1 |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> y e. RR ) | 
						
							| 79 |  | oveq2 |  |-  ( x = y -> ( B [,] x ) = ( B [,] y ) ) | 
						
							| 80 | 79 | ineq2d |  |-  ( x = y -> ( A i^i ( B [,] x ) ) = ( A i^i ( B [,] y ) ) ) | 
						
							| 81 | 80 | fveq2d |  |-  ( x = y -> ( vol ` ( A i^i ( B [,] x ) ) ) = ( vol ` ( A i^i ( B [,] y ) ) ) ) | 
						
							| 82 |  | fvex |  |-  ( vol ` ( A i^i ( B [,] y ) ) ) e. _V | 
						
							| 83 | 81 1 82 | fvmpt |  |-  ( y e. RR -> ( F ` y ) = ( vol ` ( A i^i ( B [,] y ) ) ) ) | 
						
							| 84 | 78 83 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` y ) = ( vol ` ( A i^i ( B [,] y ) ) ) ) | 
						
							| 85 |  | simp1 |  |-  ( ( y e. RR /\ z e. RR /\ y <_ z ) -> y e. RR ) | 
						
							| 86 |  | iccmbl |  |-  ( ( B e. RR /\ y e. RR ) -> ( B [,] y ) e. dom vol ) | 
						
							| 87 | 69 85 86 | syl2an |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( B [,] y ) e. dom vol ) | 
						
							| 88 |  | inmbl |  |-  ( ( A e. dom vol /\ ( B [,] y ) e. dom vol ) -> ( A i^i ( B [,] y ) ) e. dom vol ) | 
						
							| 89 | 68 87 88 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] y ) ) e. dom vol ) | 
						
							| 90 |  | mblvol |  |-  ( ( A i^i ( B [,] y ) ) e. dom vol -> ( vol ` ( A i^i ( B [,] y ) ) ) = ( vol* ` ( A i^i ( B [,] y ) ) ) ) | 
						
							| 91 | 89 90 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol ` ( A i^i ( B [,] y ) ) ) = ( vol* ` ( A i^i ( B [,] y ) ) ) ) | 
						
							| 92 | 84 91 | eqtrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` y ) = ( vol* ` ( A i^i ( B [,] y ) ) ) ) | 
						
							| 93 | 77 92 | oveq12d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( F ` z ) - ( F ` y ) ) = ( ( vol* ` ( A i^i ( B [,] z ) ) ) - ( vol* ` ( A i^i ( B [,] y ) ) ) ) ) | 
						
							| 94 | 49 | adantr |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> F : RR --> RR ) | 
						
							| 95 | 94 61 | ffvelcdmd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` z ) e. RR ) | 
						
							| 96 | 77 95 | eqeltrrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] z ) ) ) e. RR ) | 
						
							| 97 | 70 | leidd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> B <_ B ) | 
						
							| 98 |  | simpr3 |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> y <_ z ) | 
						
							| 99 |  | iccss |  |-  ( ( ( B e. RR /\ z e. RR ) /\ ( B <_ B /\ y <_ z ) ) -> ( B [,] y ) C_ ( B [,] z ) ) | 
						
							| 100 | 70 61 97 98 99 | syl22anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( B [,] y ) C_ ( B [,] z ) ) | 
						
							| 101 |  | sslin |  |-  ( ( B [,] y ) C_ ( B [,] z ) -> ( A i^i ( B [,] y ) ) C_ ( A i^i ( B [,] z ) ) ) | 
						
							| 102 | 100 101 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] y ) ) C_ ( A i^i ( B [,] z ) ) ) | 
						
							| 103 |  | mblss |  |-  ( ( A i^i ( B [,] z ) ) e. dom vol -> ( A i^i ( B [,] z ) ) C_ RR ) | 
						
							| 104 | 74 103 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] z ) ) C_ RR ) | 
						
							| 105 | 102 104 | sstrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] y ) ) C_ RR ) | 
						
							| 106 |  | iccssre |  |-  ( ( y e. RR /\ z e. RR ) -> ( y [,] z ) C_ RR ) | 
						
							| 107 | 78 61 106 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( y [,] z ) C_ RR ) | 
						
							| 108 | 105 107 | unssd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) C_ RR ) | 
						
							| 109 | 94 78 | ffvelcdmd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` y ) e. RR ) | 
						
							| 110 | 92 109 | eqeltrrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] y ) ) ) e. RR ) | 
						
							| 111 | 61 78 | resubcld |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( z - y ) e. RR ) | 
						
							| 112 | 110 111 | readdcld |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) e. RR ) | 
						
							| 113 |  | ovolicc |  |-  ( ( y e. RR /\ z e. RR /\ y <_ z ) -> ( vol* ` ( y [,] z ) ) = ( z - y ) ) | 
						
							| 114 | 113 | adantl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( y [,] z ) ) = ( z - y ) ) | 
						
							| 115 | 114 111 | eqeltrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( y [,] z ) ) e. RR ) | 
						
							| 116 |  | ovolun |  |-  ( ( ( ( A i^i ( B [,] y ) ) C_ RR /\ ( vol* ` ( A i^i ( B [,] y ) ) ) e. RR ) /\ ( ( y [,] z ) C_ RR /\ ( vol* ` ( y [,] z ) ) e. RR ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( vol* ` ( y [,] z ) ) ) ) | 
						
							| 117 | 105 110 107 115 116 | syl22anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( vol* ` ( y [,] z ) ) ) ) | 
						
							| 118 | 114 | oveq2d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( vol* ` ( y [,] z ) ) ) = ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) | 
						
							| 119 | 117 118 | breqtrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) | 
						
							| 120 |  | ovollecl |  |-  ( ( ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) C_ RR /\ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) e. RR /\ ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) e. RR ) | 
						
							| 121 | 108 112 119 120 | syl3anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) e. RR ) | 
						
							| 122 | 70 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> B e. RR ) | 
						
							| 123 | 61 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> z e. RR ) | 
						
							| 124 | 78 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> y e. RR ) | 
						
							| 125 |  | simpr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> B <_ y ) | 
						
							| 126 | 98 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> y <_ z ) | 
						
							| 127 |  | simp2 |  |-  ( ( y e. RR /\ z e. RR /\ y <_ z ) -> z e. RR ) | 
						
							| 128 |  | elicc2 |  |-  ( ( B e. RR /\ z e. RR ) -> ( y e. ( B [,] z ) <-> ( y e. RR /\ B <_ y /\ y <_ z ) ) ) | 
						
							| 129 | 69 127 128 | syl2an |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( y e. ( B [,] z ) <-> ( y e. RR /\ B <_ y /\ y <_ z ) ) ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> ( y e. ( B [,] z ) <-> ( y e. RR /\ B <_ y /\ y <_ z ) ) ) | 
						
							| 131 | 124 125 126 130 | mpbir3and |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> y e. ( B [,] z ) ) | 
						
							| 132 |  | iccsplit |  |-  ( ( B e. RR /\ z e. RR /\ y e. ( B [,] z ) ) -> ( B [,] z ) = ( ( B [,] y ) u. ( y [,] z ) ) ) | 
						
							| 133 | 122 123 131 132 | syl3anc |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> ( B [,] z ) = ( ( B [,] y ) u. ( y [,] z ) ) ) | 
						
							| 134 |  | eqimss |  |-  ( ( B [,] z ) = ( ( B [,] y ) u. ( y [,] z ) ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) | 
						
							| 135 | 133 134 | syl |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) | 
						
							| 136 | 78 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> y e. RR ) | 
						
							| 137 | 61 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> z e. RR ) | 
						
							| 138 |  | simpr |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> y <_ B ) | 
						
							| 139 | 137 | leidd |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> z <_ z ) | 
						
							| 140 |  | iccss |  |-  ( ( ( y e. RR /\ z e. RR ) /\ ( y <_ B /\ z <_ z ) ) -> ( B [,] z ) C_ ( y [,] z ) ) | 
						
							| 141 | 136 137 138 139 140 | syl22anc |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> ( B [,] z ) C_ ( y [,] z ) ) | 
						
							| 142 |  | ssun4 |  |-  ( ( B [,] z ) C_ ( y [,] z ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) | 
						
							| 143 | 141 142 | syl |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) | 
						
							| 144 | 70 78 135 143 | lecasei |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) | 
						
							| 145 |  | sslin |  |-  ( ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) -> ( A i^i ( B [,] z ) ) C_ ( A i^i ( ( B [,] y ) u. ( y [,] z ) ) ) ) | 
						
							| 146 | 144 145 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] z ) ) C_ ( A i^i ( ( B [,] y ) u. ( y [,] z ) ) ) ) | 
						
							| 147 |  | indi |  |-  ( A i^i ( ( B [,] y ) u. ( y [,] z ) ) ) = ( ( A i^i ( B [,] y ) ) u. ( A i^i ( y [,] z ) ) ) | 
						
							| 148 |  | inss2 |  |-  ( A i^i ( y [,] z ) ) C_ ( y [,] z ) | 
						
							| 149 |  | unss2 |  |-  ( ( A i^i ( y [,] z ) ) C_ ( y [,] z ) -> ( ( A i^i ( B [,] y ) ) u. ( A i^i ( y [,] z ) ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) | 
						
							| 150 | 148 149 | ax-mp |  |-  ( ( A i^i ( B [,] y ) ) u. ( A i^i ( y [,] z ) ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) | 
						
							| 151 | 147 150 | eqsstri |  |-  ( A i^i ( ( B [,] y ) u. ( y [,] z ) ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) | 
						
							| 152 | 146 151 | sstrdi |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] z ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) | 
						
							| 153 |  | ovolss |  |-  ( ( ( A i^i ( B [,] z ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) /\ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) C_ RR ) -> ( vol* ` ( A i^i ( B [,] z ) ) ) <_ ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) ) | 
						
							| 154 | 152 108 153 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] z ) ) ) <_ ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) ) | 
						
							| 155 | 96 121 112 154 119 | letrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) | 
						
							| 156 | 96 110 111 | lesubadd2d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( ( vol* ` ( A i^i ( B [,] z ) ) ) - ( vol* ` ( A i^i ( B [,] y ) ) ) ) <_ ( z - y ) <-> ( vol* ` ( A i^i ( B [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) ) | 
						
							| 157 | 155 156 | mpbird |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( vol* ` ( A i^i ( B [,] z ) ) ) - ( vol* ` ( A i^i ( B [,] y ) ) ) ) <_ ( z - y ) ) | 
						
							| 158 | 93 157 | eqbrtrd |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( F ` z ) - ( F ` y ) ) <_ ( z - y ) ) | 
						
							| 159 | 95 109 | resubcld |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( F ` z ) - ( F ` y ) ) e. RR ) | 
						
							| 160 |  | simplr |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> e e. RR+ ) | 
						
							| 161 | 160 | rpred |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> e e. RR ) | 
						
							| 162 |  | lelttr |  |-  ( ( ( ( F ` z ) - ( F ` y ) ) e. RR /\ ( z - y ) e. RR /\ e e. RR ) -> ( ( ( ( F ` z ) - ( F ` y ) ) <_ ( z - y ) /\ ( z - y ) < e ) -> ( ( F ` z ) - ( F ` y ) ) < e ) ) | 
						
							| 163 | 159 111 161 162 | syl3anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( ( ( F ` z ) - ( F ` y ) ) <_ ( z - y ) /\ ( z - y ) < e ) -> ( ( F ` z ) - ( F ` y ) ) < e ) ) | 
						
							| 164 | 158 163 | mpand |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( z - y ) < e -> ( ( F ` z ) - ( F ` y ) ) < e ) ) | 
						
							| 165 |  | abssubge0 |  |-  ( ( y e. RR /\ z e. RR /\ y <_ z ) -> ( abs ` ( z - y ) ) = ( z - y ) ) | 
						
							| 166 | 165 | adantl |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( abs ` ( z - y ) ) = ( z - y ) ) | 
						
							| 167 | 166 | breq1d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( abs ` ( z - y ) ) < e <-> ( z - y ) < e ) ) | 
						
							| 168 |  | ovolss |  |-  ( ( ( A i^i ( B [,] y ) ) C_ ( A i^i ( B [,] z ) ) /\ ( A i^i ( B [,] z ) ) C_ RR ) -> ( vol* ` ( A i^i ( B [,] y ) ) ) <_ ( vol* ` ( A i^i ( B [,] z ) ) ) ) | 
						
							| 169 | 102 104 168 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] y ) ) ) <_ ( vol* ` ( A i^i ( B [,] z ) ) ) ) | 
						
							| 170 | 169 92 77 | 3brtr4d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` y ) <_ ( F ` z ) ) | 
						
							| 171 | 109 95 170 | abssubge0d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) = ( ( F ` z ) - ( F ` y ) ) ) | 
						
							| 172 | 171 | breq1d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e <-> ( ( F ` z ) - ( F ` y ) ) < e ) ) | 
						
							| 173 | 164 167 172 | 3imtr4d |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 174 | 31 41 42 60 173 | wlogle |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 175 | 174 | anassrs |  |-  ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ y e. RR ) /\ z e. RR ) -> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 176 | 175 | ralrimiva |  |-  ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ y e. RR ) -> A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 177 | 176 | anasss |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ ( e e. RR+ /\ y e. RR ) ) -> A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 178 | 177 | ancom2s |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ ( y e. RR /\ e e. RR+ ) ) -> A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 179 |  | breq2 |  |-  ( d = e -> ( ( abs ` ( z - y ) ) < d <-> ( abs ` ( z - y ) ) < e ) ) | 
						
							| 180 | 179 | rspceaimv |  |-  ( ( e e. RR+ /\ A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) -> E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 181 | 21 178 180 | syl2anc |  |-  ( ( ( A e. dom vol /\ B e. RR ) /\ ( y e. RR /\ e e. RR+ ) ) -> E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 182 | 181 | ralrimivva |  |-  ( ( A e. dom vol /\ B e. RR ) -> A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) | 
						
							| 183 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 184 |  | elcncf2 |  |-  ( ( RR C_ CC /\ RR C_ CC ) -> ( F e. ( RR -cn-> RR ) <-> ( F : RR --> RR /\ A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) ) ) | 
						
							| 185 | 183 183 184 | mp2an |  |-  ( F e. ( RR -cn-> RR ) <-> ( F : RR --> RR /\ A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) ) | 
						
							| 186 | 20 182 185 | sylanbrc |  |-  ( ( A e. dom vol /\ B e. RR ) -> F e. ( RR -cn-> RR ) ) |