Step |
Hyp |
Ref |
Expression |
1 |
|
ovolf |
|- vol* : ~P RR --> ( 0 [,] +oo ) |
2 |
|
ffun |
|- ( vol* : ~P RR --> ( 0 [,] +oo ) -> Fun vol* ) |
3 |
|
funres |
|- ( Fun vol* -> Fun ( vol* |` dom vol ) ) |
4 |
1 2 3
|
mp2b |
|- Fun ( vol* |` dom vol ) |
5 |
|
volres |
|- vol = ( vol* |` dom vol ) |
6 |
5
|
funeqi |
|- ( Fun vol <-> Fun ( vol* |` dom vol ) ) |
7 |
4 6
|
mpbir |
|- Fun vol |
8 |
|
resss |
|- ( vol* |` dom vol ) C_ vol* |
9 |
5 8
|
eqsstri |
|- vol C_ vol* |
10 |
|
fssxp |
|- ( vol* : ~P RR --> ( 0 [,] +oo ) -> vol* C_ ( ~P RR X. ( 0 [,] +oo ) ) ) |
11 |
1 10
|
ax-mp |
|- vol* C_ ( ~P RR X. ( 0 [,] +oo ) ) |
12 |
9 11
|
sstri |
|- vol C_ ( ~P RR X. ( 0 [,] +oo ) ) |
13 |
7 12
|
pm3.2i |
|- ( Fun vol /\ vol C_ ( ~P RR X. ( 0 [,] +oo ) ) ) |
14 |
|
funssxp |
|- ( ( Fun vol /\ vol C_ ( ~P RR X. ( 0 [,] +oo ) ) ) <-> ( vol : dom vol --> ( 0 [,] +oo ) /\ dom vol C_ ~P RR ) ) |
15 |
13 14
|
mpbi |
|- ( vol : dom vol --> ( 0 [,] +oo ) /\ dom vol C_ ~P RR ) |
16 |
15
|
simpli |
|- vol : dom vol --> ( 0 [,] +oo ) |