Metamath Proof Explorer


Theorem volge0

Description: The volume of a set is always nonnegative. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion volge0
|- ( A e. dom vol -> 0 <_ ( vol ` A ) )

Proof

Step Hyp Ref Expression
1 mblss
 |-  ( A e. dom vol -> A C_ RR )
2 ovolge0
 |-  ( A C_ RR -> 0 <_ ( vol* ` A ) )
3 1 2 syl
 |-  ( A e. dom vol -> 0 <_ ( vol* ` A ) )
4 mblvol
 |-  ( A e. dom vol -> ( vol ` A ) = ( vol* ` A ) )
5 3 4 breqtrrd
 |-  ( A e. dom vol -> 0 <_ ( vol ` A ) )