Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR* ) |
3 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
4 |
3
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR* ) |
5 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A < B ) |
6 |
|
snunioo1 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
7 |
2 4 5 6
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
8 |
7
|
eqcomd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A [,) B ) = ( ( A (,) B ) u. { A } ) ) |
9 |
8
|
fveq2d |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A [,) B ) ) = ( vol ` ( ( A (,) B ) u. { A } ) ) ) |
10 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
11 |
10
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A (,) B ) e. dom vol ) |
12 |
|
snmbl |
|- ( A e. RR -> { A } e. dom vol ) |
13 |
12
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> { A } e. dom vol ) |
14 |
|
lbioo |
|- -. A e. ( A (,) B ) |
15 |
|
disjsn |
|- ( ( ( A (,) B ) i^i { A } ) = (/) <-> -. A e. ( A (,) B ) ) |
16 |
14 15
|
mpbir |
|- ( ( A (,) B ) i^i { A } ) = (/) |
17 |
16
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A (,) B ) i^i { A } ) = (/) ) |
18 |
|
ioovolcl |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) e. RR ) |
19 |
18
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,) B ) ) e. RR ) |
20 |
|
volsn |
|- ( A e. RR -> ( vol ` { A } ) = 0 ) |
21 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
22 |
20 21
|
eqeltrd |
|- ( A e. RR -> ( vol ` { A } ) e. RR ) |
23 |
22
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` { A } ) e. RR ) |
24 |
|
volun |
|- ( ( ( ( A (,) B ) e. dom vol /\ { A } e. dom vol /\ ( ( A (,) B ) i^i { A } ) = (/) ) /\ ( ( vol ` ( A (,) B ) ) e. RR /\ ( vol ` { A } ) e. RR ) ) -> ( vol ` ( ( A (,) B ) u. { A } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { A } ) ) ) |
25 |
11 13 17 19 23 24
|
syl32anc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( ( A (,) B ) u. { A } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { A } ) ) ) |
26 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR ) |
27 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR ) |
28 |
26 27 5
|
ltled |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A <_ B ) |
29 |
|
volioo |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
30 |
26 27 28 29
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
31 |
20
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` { A } ) = 0 ) |
32 |
30 31
|
oveq12d |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { A } ) ) = ( ( B - A ) + 0 ) ) |
33 |
27
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. CC ) |
34 |
|
recn |
|- ( A e. RR -> A e. CC ) |
35 |
34
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. CC ) |
36 |
33 35
|
subcld |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. CC ) |
37 |
36
|
addid1d |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( B - A ) + 0 ) = ( B - A ) ) |
38 |
32 37
|
eqtrd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { A } ) ) = ( B - A ) ) |
39 |
9 25 38
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A [,) B ) ) = ( B - A ) ) |
40 |
39
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( vol ` ( A [,) B ) ) = ( B - A ) ) |
41 |
|
iftrue |
|- ( A < B -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
42 |
41
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
43 |
40 42
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
44 |
|
simpl |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> ( A e. RR /\ B e. RR ) ) |
45 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> -. A < B ) |
46 |
44
|
simprd |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> B e. RR ) |
47 |
44
|
simpld |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> A e. RR ) |
48 |
46 47
|
lenltd |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> ( B <_ A <-> -. A < B ) ) |
49 |
45 48
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> B <_ A ) |
50 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> B <_ A ) |
51 |
1
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> A e. RR* ) |
52 |
3
|
ad2antlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> B e. RR* ) |
53 |
|
ico0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
54 |
51 52 53
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
55 |
50 54
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( A [,) B ) = (/) ) |
56 |
55
|
fveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( vol ` ( A [,) B ) ) = ( vol ` (/) ) ) |
57 |
|
vol0 |
|- ( vol ` (/) ) = 0 |
58 |
57
|
a1i |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( vol ` (/) ) = 0 ) |
59 |
56 58
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( vol ` ( A [,) B ) ) = 0 ) |
60 |
44 49 59
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> ( vol ` ( A [,) B ) ) = 0 ) |
61 |
|
iffalse |
|- ( -. A < B -> if ( A < B , ( B - A ) , 0 ) = 0 ) |
62 |
61
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) |
63 |
60 62
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A < B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
64 |
43 63
|
pm2.61dan |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |