Step |
Hyp |
Ref |
Expression |
1 |
|
volicofmpt.1 |
|- F/_ x F |
2 |
|
volicofmpt.2 |
|- ( ph -> F : A --> ( RR X. RR* ) ) |
3 |
|
nfcv |
|- F/_ x A |
4 |
|
nfcv |
|- F/_ x ( vol o. [,) ) |
5 |
4 1
|
nfco |
|- F/_ x ( ( vol o. [,) ) o. F ) |
6 |
2
|
volicoff |
|- ( ph -> ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) ) |
7 |
3 5 6
|
feqmptdf |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( x e. A |-> ( ( ( vol o. [,) ) o. F ) ` x ) ) ) |
8 |
|
ressxr |
|- RR C_ RR* |
9 |
|
xpss1 |
|- ( RR C_ RR* -> ( RR X. RR* ) C_ ( RR* X. RR* ) ) |
10 |
8 9
|
ax-mp |
|- ( RR X. RR* ) C_ ( RR* X. RR* ) |
11 |
10
|
a1i |
|- ( ph -> ( RR X. RR* ) C_ ( RR* X. RR* ) ) |
12 |
2 11
|
fssd |
|- ( ph -> F : A --> ( RR* X. RR* ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ x e. A ) -> F : A --> ( RR* X. RR* ) ) |
14 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
15 |
13 14
|
fvvolicof |
|- ( ( ph /\ x e. A ) -> ( ( ( vol o. [,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) |
16 |
15
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( ( vol o. [,) ) o. F ) ` x ) ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) ) |
17 |
7 16
|
eqtrd |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) ) |