| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							volicofmpt.1 | 
							 |-  F/_ x F  | 
						
						
							| 2 | 
							
								
							 | 
							volicofmpt.2 | 
							 |-  ( ph -> F : A --> ( RR X. RR* ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x A  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x ( vol o. [,) )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							nfco | 
							 |-  F/_ x ( ( vol o. [,) ) o. F )  | 
						
						
							| 6 | 
							
								2
							 | 
							volicoff | 
							 |-  ( ph -> ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							feqmptdf | 
							 |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( x e. A |-> ( ( ( vol o. [,) ) o. F ) ` x ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ressxr | 
							 |-  RR C_ RR*  | 
						
						
							| 9 | 
							
								
							 | 
							xpss1 | 
							 |-  ( RR C_ RR* -> ( RR X. RR* ) C_ ( RR* X. RR* ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							 |-  ( RR X. RR* ) C_ ( RR* X. RR* )  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							 |-  ( ph -> ( RR X. RR* ) C_ ( RR* X. RR* ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							fssd | 
							 |-  ( ph -> F : A --> ( RR* X. RR* ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. A ) -> F : A --> ( RR* X. RR* ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. A ) -> x e. A )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							fvvolicof | 
							 |-  ( ( ph /\ x e. A ) -> ( ( ( vol o. [,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( x e. A |-> ( ( ( vol o. [,) ) o. F ) ` x ) ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								7 16
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) )  |