Step |
Hyp |
Ref |
Expression |
1 |
|
inundif |
|- ( ( A i^i B ) u. ( A \ B ) ) = A |
2 |
1
|
fveq2i |
|- ( vol ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( vol ` A ) |
3 |
|
inmbl |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i B ) e. dom vol ) |
4 |
3
|
adantr |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( A i^i B ) e. dom vol ) |
5 |
|
difmbl |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A \ B ) e. dom vol ) |
6 |
5
|
adantr |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( A \ B ) e. dom vol ) |
7 |
|
indifcom |
|- ( ( A i^i B ) i^i ( A \ B ) ) = ( A i^i ( ( A i^i B ) \ B ) ) |
8 |
|
difin0 |
|- ( ( A i^i B ) \ B ) = (/) |
9 |
8
|
ineq2i |
|- ( A i^i ( ( A i^i B ) \ B ) ) = ( A i^i (/) ) |
10 |
|
in0 |
|- ( A i^i (/) ) = (/) |
11 |
9 10
|
eqtri |
|- ( A i^i ( ( A i^i B ) \ B ) ) = (/) |
12 |
7 11
|
eqtri |
|- ( ( A i^i B ) i^i ( A \ B ) ) = (/) |
13 |
12
|
a1i |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( A i^i B ) i^i ( A \ B ) ) = (/) ) |
14 |
|
mblvol |
|- ( ( A i^i B ) e. dom vol -> ( vol ` ( A i^i B ) ) = ( vol* ` ( A i^i B ) ) ) |
15 |
4 14
|
syl |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A i^i B ) ) = ( vol* ` ( A i^i B ) ) ) |
16 |
|
inss1 |
|- ( A i^i B ) C_ A |
17 |
16
|
a1i |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( A i^i B ) C_ A ) |
18 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
19 |
18
|
ad2antrr |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> A C_ RR ) |
20 |
|
mblvol |
|- ( A e. dom vol -> ( vol ` A ) = ( vol* ` A ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` A ) = ( vol* ` A ) ) |
22 |
|
simprl |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` A ) e. RR ) |
23 |
21 22
|
eqeltrrd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol* ` A ) e. RR ) |
24 |
|
ovolsscl |
|- ( ( ( A i^i B ) C_ A /\ A C_ RR /\ ( vol* ` A ) e. RR ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
25 |
17 19 23 24
|
syl3anc |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
26 |
15 25
|
eqeltrd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A i^i B ) ) e. RR ) |
27 |
|
mblvol |
|- ( ( A \ B ) e. dom vol -> ( vol ` ( A \ B ) ) = ( vol* ` ( A \ B ) ) ) |
28 |
6 27
|
syl |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A \ B ) ) = ( vol* ` ( A \ B ) ) ) |
29 |
|
difssd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( A \ B ) C_ A ) |
30 |
|
ovolsscl |
|- ( ( ( A \ B ) C_ A /\ A C_ RR /\ ( vol* ` A ) e. RR ) -> ( vol* ` ( A \ B ) ) e. RR ) |
31 |
29 19 23 30
|
syl3anc |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol* ` ( A \ B ) ) e. RR ) |
32 |
28 31
|
eqeltrd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A \ B ) ) e. RR ) |
33 |
|
volun |
|- ( ( ( ( A i^i B ) e. dom vol /\ ( A \ B ) e. dom vol /\ ( ( A i^i B ) i^i ( A \ B ) ) = (/) ) /\ ( ( vol ` ( A i^i B ) ) e. RR /\ ( vol ` ( A \ B ) ) e. RR ) ) -> ( vol ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) ) |
34 |
4 6 13 26 32 33
|
syl32anc |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) ) |
35 |
2 34
|
eqtr3id |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` A ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) ) |
36 |
35
|
oveq1d |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` A ) + ( vol ` B ) ) = ( ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) + ( vol ` B ) ) ) |
37 |
26
|
recnd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A i^i B ) ) e. CC ) |
38 |
32
|
recnd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A \ B ) ) e. CC ) |
39 |
|
simprr |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` B ) e. RR ) |
40 |
39
|
recnd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` B ) e. CC ) |
41 |
37 38 40
|
addassd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) + ( vol ` B ) ) = ( ( vol ` ( A i^i B ) ) + ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) ) ) |
42 |
|
simplr |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> B e. dom vol ) |
43 |
|
disjdifr |
|- ( ( A \ B ) i^i B ) = (/) |
44 |
43
|
a1i |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( A \ B ) i^i B ) = (/) ) |
45 |
|
volun |
|- ( ( ( ( A \ B ) e. dom vol /\ B e. dom vol /\ ( ( A \ B ) i^i B ) = (/) ) /\ ( ( vol ` ( A \ B ) ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( ( A \ B ) u. B ) ) = ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) ) |
46 |
6 42 44 32 39 45
|
syl32anc |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( ( A \ B ) u. B ) ) = ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) ) |
47 |
|
undif1 |
|- ( ( A \ B ) u. B ) = ( A u. B ) |
48 |
47
|
fveq2i |
|- ( vol ` ( ( A \ B ) u. B ) ) = ( vol ` ( A u. B ) ) |
49 |
46 48
|
eqtr3di |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) = ( vol ` ( A u. B ) ) ) |
50 |
49
|
oveq2d |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` ( A i^i B ) ) + ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A u. B ) ) ) ) |
51 |
36 41 50
|
3eqtrd |
|- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` A ) + ( vol ` B ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A u. B ) ) ) ) |