Step |
Hyp |
Ref |
Expression |
1 |
|
vol0 |
|- ( vol ` (/) ) = 0 |
2 |
|
oveq2 |
|- ( A = B -> ( A (,] A ) = ( A (,] B ) ) |
3 |
2
|
eqcomd |
|- ( A = B -> ( A (,] B ) = ( A (,] A ) ) |
4 |
|
leid |
|- ( A e. RR -> A <_ A ) |
5 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
6 |
|
ioc0 |
|- ( ( A e. RR* /\ A e. RR* ) -> ( ( A (,] A ) = (/) <-> A <_ A ) ) |
7 |
5 5 6
|
syl2anc |
|- ( A e. RR -> ( ( A (,] A ) = (/) <-> A <_ A ) ) |
8 |
4 7
|
mpbird |
|- ( A e. RR -> ( A (,] A ) = (/) ) |
9 |
3 8
|
sylan9eqr |
|- ( ( A e. RR /\ A = B ) -> ( A (,] B ) = (/) ) |
10 |
9
|
fveq2d |
|- ( ( A e. RR /\ A = B ) -> ( vol ` ( A (,] B ) ) = ( vol ` (/) ) ) |
11 |
|
eqcom |
|- ( A = B <-> B = A ) |
12 |
11
|
biimpi |
|- ( A = B -> B = A ) |
13 |
12
|
adantl |
|- ( ( A e. RR /\ A = B ) -> B = A ) |
14 |
|
recn |
|- ( A e. RR -> A e. CC ) |
15 |
14
|
adantr |
|- ( ( A e. RR /\ A = B ) -> A e. CC ) |
16 |
13 15
|
eqeltrd |
|- ( ( A e. RR /\ A = B ) -> B e. CC ) |
17 |
16 13
|
subeq0bd |
|- ( ( A e. RR /\ A = B ) -> ( B - A ) = 0 ) |
18 |
1 10 17
|
3eqtr4a |
|- ( ( A e. RR /\ A = B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
19 |
18
|
3ad2antl1 |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ A = B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
20 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> A e. RR ) |
21 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> B e. RR ) |
22 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> A <_ B ) |
23 |
|
eqcom |
|- ( B = A <-> A = B ) |
24 |
23
|
biimpi |
|- ( B = A -> A = B ) |
25 |
24
|
necon3bi |
|- ( -. A = B -> B =/= A ) |
26 |
25
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> B =/= A ) |
27 |
20 21 22 26
|
leneltd |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> A < B ) |
28 |
5
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR* ) |
29 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
30 |
29
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR* ) |
31 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A < B ) |
32 |
|
ioounsn |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
33 |
28 30 31 32
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
34 |
33
|
eqcomd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A (,] B ) = ( ( A (,) B ) u. { B } ) ) |
35 |
34
|
fveq2d |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,] B ) ) = ( vol ` ( ( A (,) B ) u. { B } ) ) ) |
36 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
37 |
36
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A (,) B ) e. dom vol ) |
38 |
|
snmbl |
|- ( B e. RR -> { B } e. dom vol ) |
39 |
38
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> { B } e. dom vol ) |
40 |
|
ubioo |
|- -. B e. ( A (,) B ) |
41 |
|
disjsn |
|- ( ( ( A (,) B ) i^i { B } ) = (/) <-> -. B e. ( A (,) B ) ) |
42 |
40 41
|
mpbir |
|- ( ( A (,) B ) i^i { B } ) = (/) |
43 |
42
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A (,) B ) i^i { B } ) = (/) ) |
44 |
|
ioovolcl |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) e. RR ) |
45 |
44
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,) B ) ) e. RR ) |
46 |
|
volsn |
|- ( B e. RR -> ( vol ` { B } ) = 0 ) |
47 |
|
0red |
|- ( B e. RR -> 0 e. RR ) |
48 |
46 47
|
eqeltrd |
|- ( B e. RR -> ( vol ` { B } ) e. RR ) |
49 |
48
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` { B } ) e. RR ) |
50 |
|
volun |
|- ( ( ( ( A (,) B ) e. dom vol /\ { B } e. dom vol /\ ( ( A (,) B ) i^i { B } ) = (/) ) /\ ( ( vol ` ( A (,) B ) ) e. RR /\ ( vol ` { B } ) e. RR ) ) -> ( vol ` ( ( A (,) B ) u. { B } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { B } ) ) ) |
51 |
37 39 43 45 49 50
|
syl32anc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( ( A (,) B ) u. { B } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { B } ) ) ) |
52 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR ) |
53 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR ) |
54 |
52 53 31
|
ltled |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A <_ B ) |
55 |
|
volioo |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
56 |
52 53 54 55
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
57 |
46
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` { B } ) = 0 ) |
58 |
56 57
|
oveq12d |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { B } ) ) = ( ( B - A ) + 0 ) ) |
59 |
53
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. CC ) |
60 |
14
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. CC ) |
61 |
59 60
|
subcld |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. CC ) |
62 |
61
|
addid1d |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( B - A ) + 0 ) = ( B - A ) ) |
63 |
58 62
|
eqtrd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { B } ) ) = ( B - A ) ) |
64 |
35 51 63
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
65 |
20 21 27 64
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ -. A = B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |
66 |
19 65
|
pm2.61dan |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,] B ) ) = ( B - A ) ) |