Step |
Hyp |
Ref |
Expression |
1 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
2 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
3 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
4 |
2 3
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
5 |
|
df-ov |
|- ( ( 1st ` x ) (,) ( 2nd ` x ) ) = ( (,) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
6 |
5
|
a1i |
|- ( x e. ( RR* X. RR* ) -> ( ( 1st ` x ) (,) ( 2nd ` x ) ) = ( (,) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
7 |
|
1st2nd2 |
|- ( x e. ( RR* X. RR* ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
8 |
7
|
eqcomd |
|- ( x e. ( RR* X. RR* ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. = x ) |
9 |
8
|
fveq2d |
|- ( x e. ( RR* X. RR* ) -> ( (,) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) = ( (,) ` x ) ) |
10 |
6 9
|
eqtr2d |
|- ( x e. ( RR* X. RR* ) -> ( (,) ` x ) = ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) |
11 |
|
ioombl |
|- ( ( 1st ` x ) (,) ( 2nd ` x ) ) e. dom vol |
12 |
10 11
|
eqeltrdi |
|- ( x e. ( RR* X. RR* ) -> ( (,) ` x ) e. dom vol ) |
13 |
12
|
rgen |
|- A. x e. ( RR* X. RR* ) ( (,) ` x ) e. dom vol |
14 |
4 13
|
pm3.2i |
|- ( (,) Fn ( RR* X. RR* ) /\ A. x e. ( RR* X. RR* ) ( (,) ` x ) e. dom vol ) |
15 |
|
ffnfv |
|- ( (,) : ( RR* X. RR* ) --> dom vol <-> ( (,) Fn ( RR* X. RR* ) /\ A. x e. ( RR* X. RR* ) ( (,) ` x ) e. dom vol ) ) |
16 |
14 15
|
mpbir |
|- (,) : ( RR* X. RR* ) --> dom vol |
17 |
|
fco |
|- ( ( vol : dom vol --> ( 0 [,] +oo ) /\ (,) : ( RR* X. RR* ) --> dom vol ) -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) |
18 |
1 16 17
|
mp2an |
|- ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) |