Step |
Hyp |
Ref |
Expression |
1 |
|
volioofmpt.x |
|- F/_ x F |
2 |
|
volioofmpt.f |
|- ( ph -> F : A --> ( RR* X. RR* ) ) |
3 |
|
nfcv |
|- F/_ x A |
4 |
|
nfcv |
|- F/_ x ( vol o. (,) ) |
5 |
4 1
|
nfco |
|- F/_ x ( ( vol o. (,) ) o. F ) |
6 |
|
volioof |
|- ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) |
7 |
6
|
a1i |
|- ( ph -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) |
8 |
|
fco |
|- ( ( ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) /\ F : A --> ( RR* X. RR* ) ) -> ( ( vol o. (,) ) o. F ) : A --> ( 0 [,] +oo ) ) |
9 |
7 2 8
|
syl2anc |
|- ( ph -> ( ( vol o. (,) ) o. F ) : A --> ( 0 [,] +oo ) ) |
10 |
3 5 9
|
feqmptdf |
|- ( ph -> ( ( vol o. (,) ) o. F ) = ( x e. A |-> ( ( ( vol o. (,) ) o. F ) ` x ) ) ) |
11 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> F : A --> ( RR* X. RR* ) ) |
12 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
13 |
11 12
|
fvvolioof |
|- ( ( ph /\ x e. A ) -> ( ( ( vol o. (,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) |
14 |
13
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( ( vol o. (,) ) o. F ) ` x ) ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) ) |
15 |
10 14
|
eqtrd |
|- ( ph -> ( ( vol o. (,) ) o. F ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) ) |