| Step |
Hyp |
Ref |
Expression |
| 1 |
|
voliooico.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
voliooico.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
iftrue |
|- ( A < B -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 4 |
3
|
adantl |
|- ( ( ( ph /\ A <_ B ) /\ A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 5 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 6 |
5
|
subidd |
|- ( ph -> ( B - B ) = 0 ) |
| 7 |
6
|
eqcomd |
|- ( ph -> 0 = ( B - B ) ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> 0 = ( B - B ) ) |
| 9 |
|
iffalse |
|- ( -. A < B -> if ( A < B , ( B - A ) , 0 ) = 0 ) |
| 10 |
9
|
adantl |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) |
| 11 |
|
simpll |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> ph ) |
| 12 |
11 1
|
syl |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> A e. RR ) |
| 13 |
11 2
|
syl |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> B e. RR ) |
| 14 |
|
simpr |
|- ( ( ph /\ A <_ B ) -> A <_ B ) |
| 15 |
14
|
adantr |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> A <_ B ) |
| 16 |
|
simpr |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> -. A < B ) |
| 17 |
12 13 15 16
|
lenlteq |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> A = B ) |
| 18 |
|
oveq2 |
|- ( A = B -> ( B - A ) = ( B - B ) ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ A = B ) -> ( B - A ) = ( B - B ) ) |
| 20 |
11 17 19
|
syl2anc |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> ( B - A ) = ( B - B ) ) |
| 21 |
8 10 20
|
3eqtr4d |
|- ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 22 |
4 21
|
pm2.61dan |
|- ( ( ph /\ A <_ B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 23 |
22
|
eqcomd |
|- ( ( ph /\ A <_ B ) -> ( B - A ) = if ( A < B , ( B - A ) , 0 ) ) |
| 24 |
1
|
adantr |
|- ( ( ph /\ A <_ B ) -> A e. RR ) |
| 25 |
2
|
adantr |
|- ( ( ph /\ A <_ B ) -> B e. RR ) |
| 26 |
|
volioo |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
| 27 |
24 25 14 26
|
syl3anc |
|- ( ( ph /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
| 28 |
|
volico |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 29 |
1 2 28
|
syl2anc |
|- ( ph -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ A <_ B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 31 |
23 27 30
|
3eqtr4d |
|- ( ( ph /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( vol ` ( A [,) B ) ) ) |
| 32 |
|
simpl |
|- ( ( ph /\ -. A <_ B ) -> ph ) |
| 33 |
|
simpr |
|- ( ( ph /\ -. A <_ B ) -> -. A <_ B ) |
| 34 |
32 2
|
syl |
|- ( ( ph /\ -. A <_ B ) -> B e. RR ) |
| 35 |
32 1
|
syl |
|- ( ( ph /\ -. A <_ B ) -> A e. RR ) |
| 36 |
34 35
|
ltnled |
|- ( ( ph /\ -. A <_ B ) -> ( B < A <-> -. A <_ B ) ) |
| 37 |
33 36
|
mpbird |
|- ( ( ph /\ -. A <_ B ) -> B < A ) |
| 38 |
2
|
adantr |
|- ( ( ph /\ B < A ) -> B e. RR ) |
| 39 |
1
|
adantr |
|- ( ( ph /\ B < A ) -> A e. RR ) |
| 40 |
|
simpr |
|- ( ( ph /\ B < A ) -> B < A ) |
| 41 |
38 39 40
|
ltled |
|- ( ( ph /\ B < A ) -> B <_ A ) |
| 42 |
39
|
rexrd |
|- ( ( ph /\ B < A ) -> A e. RR* ) |
| 43 |
38
|
rexrd |
|- ( ( ph /\ B < A ) -> B e. RR* ) |
| 44 |
|
ioo0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 45 |
42 43 44
|
syl2anc |
|- ( ( ph /\ B < A ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 46 |
41 45
|
mpbird |
|- ( ( ph /\ B < A ) -> ( A (,) B ) = (/) ) |
| 47 |
|
ico0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
| 48 |
42 43 47
|
syl2anc |
|- ( ( ph /\ B < A ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
| 49 |
41 48
|
mpbird |
|- ( ( ph /\ B < A ) -> ( A [,) B ) = (/) ) |
| 50 |
46 49
|
eqtr4d |
|- ( ( ph /\ B < A ) -> ( A (,) B ) = ( A [,) B ) ) |
| 51 |
50
|
fveq2d |
|- ( ( ph /\ B < A ) -> ( vol ` ( A (,) B ) ) = ( vol ` ( A [,) B ) ) ) |
| 52 |
32 37 51
|
syl2anc |
|- ( ( ph /\ -. A <_ B ) -> ( vol ` ( A (,) B ) ) = ( vol ` ( A [,) B ) ) ) |
| 53 |
31 52
|
pm2.61dan |
|- ( ph -> ( vol ` ( A (,) B ) ) = ( vol ` ( A [,) B ) ) ) |