Step |
Hyp |
Ref |
Expression |
1 |
|
voliooicof.1 |
|- ( ph -> F : A --> ( RR X. RR ) ) |
2 |
|
volioof |
|- ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) |
3 |
2
|
a1i |
|- ( ph -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) |
4 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
5 |
4
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) |
6 |
3 5 1
|
fcoss |
|- ( ph -> ( ( vol o. (,) ) o. F ) : A --> ( 0 [,] +oo ) ) |
7 |
6
|
ffnd |
|- ( ph -> ( ( vol o. (,) ) o. F ) Fn A ) |
8 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
9 |
8
|
a1i |
|- ( ph -> vol : dom vol --> ( 0 [,] +oo ) ) |
10 |
|
icof |
|- [,) : ( RR* X. RR* ) --> ~P RR* |
11 |
10
|
a1i |
|- ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) |
12 |
11 5 1
|
fcoss |
|- ( ph -> ( [,) o. F ) : A --> ~P RR* ) |
13 |
12
|
ffnd |
|- ( ph -> ( [,) o. F ) Fn A ) |
14 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> F : A --> ( RR X. RR ) ) |
15 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
16 |
14 15
|
fvovco |
|- ( ( ph /\ x e. A ) -> ( ( [,) o. F ) ` x ) = ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) |
17 |
1
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. ( RR X. RR ) ) |
18 |
|
xp1st |
|- ( ( F ` x ) e. ( RR X. RR ) -> ( 1st ` ( F ` x ) ) e. RR ) |
19 |
17 18
|
syl |
|- ( ( ph /\ x e. A ) -> ( 1st ` ( F ` x ) ) e. RR ) |
20 |
|
xp2nd |
|- ( ( F ` x ) e. ( RR X. RR ) -> ( 2nd ` ( F ` x ) ) e. RR ) |
21 |
17 20
|
syl |
|- ( ( ph /\ x e. A ) -> ( 2nd ` ( F ` x ) ) e. RR ) |
22 |
21
|
rexrd |
|- ( ( ph /\ x e. A ) -> ( 2nd ` ( F ` x ) ) e. RR* ) |
23 |
|
icombl |
|- ( ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR* ) -> ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) e. dom vol ) |
24 |
19 22 23
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) e. dom vol ) |
25 |
16 24
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( ( [,) o. F ) ` x ) e. dom vol ) |
26 |
25
|
ralrimiva |
|- ( ph -> A. x e. A ( ( [,) o. F ) ` x ) e. dom vol ) |
27 |
13 26
|
jca |
|- ( ph -> ( ( [,) o. F ) Fn A /\ A. x e. A ( ( [,) o. F ) ` x ) e. dom vol ) ) |
28 |
|
ffnfv |
|- ( ( [,) o. F ) : A --> dom vol <-> ( ( [,) o. F ) Fn A /\ A. x e. A ( ( [,) o. F ) ` x ) e. dom vol ) ) |
29 |
27 28
|
sylibr |
|- ( ph -> ( [,) o. F ) : A --> dom vol ) |
30 |
|
fco |
|- ( ( vol : dom vol --> ( 0 [,] +oo ) /\ ( [,) o. F ) : A --> dom vol ) -> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) |
31 |
9 29 30
|
syl2anc |
|- ( ph -> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) |
32 |
|
coass |
|- ( ( vol o. [,) ) o. F ) = ( vol o. ( [,) o. F ) ) |
33 |
32
|
a1i |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( vol o. ( [,) o. F ) ) ) |
34 |
33
|
feq1d |
|- ( ph -> ( ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) <-> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) ) |
35 |
31 34
|
mpbird |
|- ( ph -> ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) ) |
36 |
35
|
ffnd |
|- ( ph -> ( ( vol o. [,) ) o. F ) Fn A ) |
37 |
19 21
|
voliooico |
|- ( ( ph /\ x e. A ) -> ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) = ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) |
38 |
1 5
|
fssd |
|- ( ph -> F : A --> ( RR* X. RR* ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ x e. A ) -> F : A --> ( RR* X. RR* ) ) |
40 |
39 15
|
fvvolioof |
|- ( ( ph /\ x e. A ) -> ( ( ( vol o. (,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) |
41 |
39 15
|
fvvolicof |
|- ( ( ph /\ x e. A ) -> ( ( ( vol o. [,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) |
42 |
37 40 41
|
3eqtr4d |
|- ( ( ph /\ x e. A ) -> ( ( ( vol o. (,) ) o. F ) ` x ) = ( ( ( vol o. [,) ) o. F ) ` x ) ) |
43 |
7 36 42
|
eqfnfvd |
|- ( ph -> ( ( vol o. (,) ) o. F ) = ( ( vol o. [,) ) o. F ) ) |