| Step |
Hyp |
Ref |
Expression |
| 1 |
|
volioo |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
| 2 |
1
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
| 3 |
|
iftrue |
|- ( A <_ B -> if ( A <_ B , ( B - A ) , 0 ) = ( B - A ) ) |
| 4 |
3
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> if ( A <_ B , ( B - A ) , 0 ) = ( B - A ) ) |
| 5 |
2 4
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 6 |
|
simpl |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( A e. RR /\ B e. RR ) ) |
| 7 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> -. A <_ B ) |
| 8 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 9 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 10 |
8 9
|
ltnled |
|- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> -. A <_ B ) ) |
| 11 |
10
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( B < A <-> -. A <_ B ) ) |
| 12 |
7 11
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> B < A ) |
| 13 |
|
vol0 |
|- ( vol ` (/) ) = 0 |
| 14 |
13
|
a1i |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol ` (/) ) = 0 ) |
| 15 |
8
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B e. RR ) |
| 16 |
9
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> A e. RR ) |
| 17 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B < A ) |
| 18 |
15 16 17
|
ltled |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B <_ A ) |
| 19 |
9
|
rexrd |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR* ) |
| 20 |
8
|
rexrd |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR* ) |
| 21 |
|
ioo0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 22 |
19 20 21
|
syl2anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 23 |
22
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 24 |
18 23
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( A (,) B ) = (/) ) |
| 25 |
24
|
fveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol ` ( A (,) B ) ) = ( vol ` (/) ) ) |
| 26 |
10
|
biimpa |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> -. A <_ B ) |
| 27 |
26
|
iffalsed |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> if ( A <_ B , ( B - A ) , 0 ) = 0 ) |
| 28 |
14 25 27
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol ` ( A (,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 29 |
6 12 28
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( vol ` ( A (,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 30 |
5 29
|
pm2.61dan |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |