Step |
Hyp |
Ref |
Expression |
1 |
|
voliunlem.3 |
|- ( ph -> F : NN --> dom vol ) |
2 |
|
voliunlem.5 |
|- ( ph -> Disj_ i e. NN ( F ` i ) ) |
3 |
|
voliunlem1.6 |
|- H = ( n e. NN |-> ( vol* ` ( E i^i ( F ` n ) ) ) ) |
4 |
|
voliunlem1.7 |
|- ( ph -> E C_ RR ) |
5 |
|
voliunlem1.8 |
|- ( ph -> ( vol* ` E ) e. RR ) |
6 |
|
difss |
|- ( E \ U. ran F ) C_ E |
7 |
5
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( vol* ` E ) e. RR ) |
8 |
|
ovolsscl |
|- ( ( ( E \ U. ran F ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ U. ran F ) ) e. RR ) |
9 |
6 4 7 8
|
mp3an2ani |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U. ran F ) ) e. RR ) |
10 |
|
difss |
|- ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E |
11 |
|
ovolsscl |
|- ( ( ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) |
12 |
10 4 7 11
|
mp3an2ani |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) |
13 |
|
inss1 |
|- ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E |
14 |
|
ovolsscl |
|- ( ( ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) |
15 |
13 4 7 14
|
mp3an2ani |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) |
16 |
|
elfznn |
|- ( n e. ( 1 ... k ) -> n e. NN ) |
17 |
1
|
ffnd |
|- ( ph -> F Fn NN ) |
18 |
|
fnfvelrn |
|- ( ( F Fn NN /\ n e. NN ) -> ( F ` n ) e. ran F ) |
19 |
17 18
|
sylan |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ran F ) |
20 |
|
elssuni |
|- ( ( F ` n ) e. ran F -> ( F ` n ) C_ U. ran F ) |
21 |
19 20
|
syl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) |
22 |
16 21
|
sylan2 |
|- ( ( ph /\ n e. ( 1 ... k ) ) -> ( F ` n ) C_ U. ran F ) |
23 |
22
|
ralrimiva |
|- ( ph -> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) |
24 |
23
|
adantr |
|- ( ( ph /\ k e. NN ) -> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) |
25 |
|
iunss |
|- ( U_ n e. ( 1 ... k ) ( F ` n ) C_ U. ran F <-> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) |
26 |
24 25
|
sylibr |
|- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) |
27 |
26
|
sscond |
|- ( ( ph /\ k e. NN ) -> ( E \ U. ran F ) C_ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
28 |
4
|
adantr |
|- ( ( ph /\ k e. NN ) -> E C_ RR ) |
29 |
10 28
|
sstrid |
|- ( ( ph /\ k e. NN ) -> ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ RR ) |
30 |
|
ovolss |
|- ( ( ( E \ U. ran F ) C_ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) /\ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ RR ) -> ( vol* ` ( E \ U. ran F ) ) <_ ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
31 |
27 29 30
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U. ran F ) ) <_ ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
32 |
9 12 15 31
|
leadd2dd |
|- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U. ran F ) ) ) <_ ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) |
33 |
|
oveq2 |
|- ( z = 1 -> ( 1 ... z ) = ( 1 ... 1 ) ) |
34 |
33
|
iuneq1d |
|- ( z = 1 -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... 1 ) ( F ` n ) ) |
35 |
34
|
eleq1d |
|- ( z = 1 -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol ) ) |
36 |
34
|
ineq2d |
|- ( z = 1 -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) |
37 |
36
|
fveq2d |
|- ( z = 1 -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) ) |
38 |
|
fveq2 |
|- ( z = 1 -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` 1 ) ) |
39 |
37 38
|
eqeq12d |
|- ( z = 1 -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) |
40 |
35 39
|
anbi12d |
|- ( z = 1 -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) ) |
41 |
40
|
imbi2d |
|- ( z = 1 -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) ) ) |
42 |
|
oveq2 |
|- ( z = k -> ( 1 ... z ) = ( 1 ... k ) ) |
43 |
42
|
iuneq1d |
|- ( z = k -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... k ) ( F ` n ) ) |
44 |
43
|
eleq1d |
|- ( z = k -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol ) ) |
45 |
43
|
ineq2d |
|- ( z = k -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
46 |
45
|
fveq2d |
|- ( z = k -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
47 |
|
fveq2 |
|- ( z = k -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` k ) ) |
48 |
46 47
|
eqeq12d |
|- ( z = k -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) |
49 |
44 48
|
anbi12d |
|- ( z = k -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) |
50 |
49
|
imbi2d |
|- ( z = k -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) ) |
51 |
|
oveq2 |
|- ( z = ( k + 1 ) -> ( 1 ... z ) = ( 1 ... ( k + 1 ) ) ) |
52 |
51
|
iuneq1d |
|- ( z = ( k + 1 ) -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
53 |
52
|
eleq1d |
|- ( z = ( k + 1 ) -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol ) ) |
54 |
52
|
ineq2d |
|- ( z = ( k + 1 ) -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) |
55 |
54
|
fveq2d |
|- ( z = ( k + 1 ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) ) |
56 |
|
fveq2 |
|- ( z = ( k + 1 ) -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) |
57 |
55 56
|
eqeq12d |
|- ( z = ( k + 1 ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) |
58 |
53 57
|
anbi12d |
|- ( z = ( k + 1 ) -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) |
59 |
58
|
imbi2d |
|- ( z = ( k + 1 ) -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) |
60 |
|
1z |
|- 1 e. ZZ |
61 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
62 |
|
iuneq1 |
|- ( ( 1 ... 1 ) = { 1 } -> U_ n e. ( 1 ... 1 ) ( F ` n ) = U_ n e. { 1 } ( F ` n ) ) |
63 |
60 61 62
|
mp2b |
|- U_ n e. ( 1 ... 1 ) ( F ` n ) = U_ n e. { 1 } ( F ` n ) |
64 |
|
1ex |
|- 1 e. _V |
65 |
|
fveq2 |
|- ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) |
66 |
64 65
|
iunxsn |
|- U_ n e. { 1 } ( F ` n ) = ( F ` 1 ) |
67 |
63 66
|
eqtri |
|- U_ n e. ( 1 ... 1 ) ( F ` n ) = ( F ` 1 ) |
68 |
|
1nn |
|- 1 e. NN |
69 |
|
ffvelrn |
|- ( ( F : NN --> dom vol /\ 1 e. NN ) -> ( F ` 1 ) e. dom vol ) |
70 |
1 68 69
|
sylancl |
|- ( ph -> ( F ` 1 ) e. dom vol ) |
71 |
67 70
|
eqeltrid |
|- ( ph -> U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol ) |
72 |
65
|
ineq2d |
|- ( n = 1 -> ( E i^i ( F ` n ) ) = ( E i^i ( F ` 1 ) ) ) |
73 |
72
|
fveq2d |
|- ( n = 1 -> ( vol* ` ( E i^i ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) ) |
74 |
|
fvex |
|- ( vol* ` ( E i^i ( F ` 1 ) ) ) e. _V |
75 |
73 3 74
|
fvmpt |
|- ( 1 e. NN -> ( H ` 1 ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) ) |
76 |
68 75
|
ax-mp |
|- ( H ` 1 ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) |
77 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( + , H ) ` 1 ) = ( H ` 1 ) ) |
78 |
60 77
|
ax-mp |
|- ( seq 1 ( + , H ) ` 1 ) = ( H ` 1 ) |
79 |
67
|
ineq2i |
|- ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) = ( E i^i ( F ` 1 ) ) |
80 |
79
|
fveq2i |
|- ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) |
81 |
76 78 80
|
3eqtr4ri |
|- ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) |
82 |
71 81
|
jctir |
|- ( ph -> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) |
83 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
84 |
|
ffvelrn |
|- ( ( F : NN --> dom vol /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. dom vol ) |
85 |
1 83 84
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. dom vol ) |
86 |
|
unmbl |
|- ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( F ` ( k + 1 ) ) e. dom vol ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) |
87 |
86
|
ex |
|- ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> ( ( F ` ( k + 1 ) ) e. dom vol -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) |
88 |
85 87
|
syl5com |
|- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) |
89 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
90 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
91 |
89 90
|
eleqtrdi |
|- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
92 |
|
fzsuc |
|- ( k e. ( ZZ>= ` 1 ) -> ( 1 ... ( k + 1 ) ) = ( ( 1 ... k ) u. { ( k + 1 ) } ) ) |
93 |
|
iuneq1 |
|- ( ( 1 ... ( k + 1 ) ) = ( ( 1 ... k ) u. { ( k + 1 ) } ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) ) |
94 |
91 92 93
|
3syl |
|- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) ) |
95 |
|
iunxun |
|- U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. U_ n e. { ( k + 1 ) } ( F ` n ) ) |
96 |
|
ovex |
|- ( k + 1 ) e. _V |
97 |
|
fveq2 |
|- ( n = ( k + 1 ) -> ( F ` n ) = ( F ` ( k + 1 ) ) ) |
98 |
96 97
|
iunxsn |
|- U_ n e. { ( k + 1 ) } ( F ` n ) = ( F ` ( k + 1 ) ) |
99 |
98
|
uneq2i |
|- ( U_ n e. ( 1 ... k ) ( F ` n ) u. U_ n e. { ( k + 1 ) } ( F ` n ) ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) |
100 |
95 99
|
eqtri |
|- U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) |
101 |
94 100
|
eqtrdi |
|- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) ) |
102 |
101
|
eleq1d |
|- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol <-> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) |
103 |
88 102
|
sylibrd |
|- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol ) ) |
104 |
|
oveq1 |
|- ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
105 |
|
inss1 |
|- ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ E |
106 |
105 28
|
sstrid |
|- ( ( ph /\ k e. NN ) -> ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ RR ) |
107 |
|
ovolsscl |
|- ( ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) |
108 |
105 4 7 107
|
mp3an2ani |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) |
109 |
|
mblsplit |
|- ( ( ( F ` ( k + 1 ) ) e. dom vol /\ ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ RR /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) ) |
110 |
85 106 108 109
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) ) |
111 |
|
in32 |
|- ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) = ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
112 |
|
inss2 |
|- ( E i^i ( F ` ( k + 1 ) ) ) C_ ( F ` ( k + 1 ) ) |
113 |
83
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) |
114 |
113 90
|
eleqtrdi |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. ( ZZ>= ` 1 ) ) |
115 |
|
eluzfz2 |
|- ( ( k + 1 ) e. ( ZZ>= ` 1 ) -> ( k + 1 ) e. ( 1 ... ( k + 1 ) ) ) |
116 |
97
|
ssiun2s |
|- ( ( k + 1 ) e. ( 1 ... ( k + 1 ) ) -> ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
117 |
114 115 116
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
118 |
112 117
|
sstrid |
|- ( ( ph /\ k e. NN ) -> ( E i^i ( F ` ( k + 1 ) ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
119 |
|
df-ss |
|- ( ( E i^i ( F ` ( k + 1 ) ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) |
120 |
118 119
|
sylib |
|- ( ( ph /\ k e. NN ) -> ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) |
121 |
111 120
|
eqtrid |
|- ( ( ph /\ k e. NN ) -> ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) |
122 |
121
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) |
123 |
|
indif2 |
|- ( E i^i ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) ) = ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) |
124 |
|
uncom |
|- ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) = ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) |
125 |
101 124
|
eqtr2di |
|- ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
126 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> Disj_ i e. NN ( F ` i ) ) |
127 |
113
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( k + 1 ) e. NN ) |
128 |
16
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. NN ) |
129 |
128
|
nnred |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. RR ) |
130 |
|
elfzle2 |
|- ( n e. ( 1 ... k ) -> n <_ k ) |
131 |
130
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n <_ k ) |
132 |
89
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> k e. NN ) |
133 |
|
nnleltp1 |
|- ( ( n e. NN /\ k e. NN ) -> ( n <_ k <-> n < ( k + 1 ) ) ) |
134 |
128 132 133
|
syl2anc |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( n <_ k <-> n < ( k + 1 ) ) ) |
135 |
131 134
|
mpbid |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n < ( k + 1 ) ) |
136 |
129 135
|
gtned |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( k + 1 ) =/= n ) |
137 |
|
fveq2 |
|- ( i = ( k + 1 ) -> ( F ` i ) = ( F ` ( k + 1 ) ) ) |
138 |
|
fveq2 |
|- ( i = n -> ( F ` i ) = ( F ` n ) ) |
139 |
137 138
|
disji2 |
|- ( ( Disj_ i e. NN ( F ` i ) /\ ( ( k + 1 ) e. NN /\ n e. NN ) /\ ( k + 1 ) =/= n ) -> ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = (/) ) |
140 |
126 127 128 136 139
|
syl121anc |
|- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = (/) ) |
141 |
140
|
iuneq2dv |
|- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = U_ n e. ( 1 ... k ) (/) ) |
142 |
|
iunin2 |
|- U_ n e. ( 1 ... k ) ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) |
143 |
|
iun0 |
|- U_ n e. ( 1 ... k ) (/) = (/) |
144 |
141 142 143
|
3eqtr3g |
|- ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) = (/) ) |
145 |
|
uneqdifeq |
|- ( ( ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) /\ ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) = (/) ) -> ( ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
146 |
117 144 145
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
147 |
125 146
|
mpbid |
|- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) |
148 |
147
|
ineq2d |
|- ( ( ph /\ k e. NN ) -> ( E i^i ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
149 |
123 148
|
eqtr3id |
|- ( ( ph /\ k e. NN ) -> ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
150 |
149
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
151 |
122 150
|
oveq12d |
|- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) = ( ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) |
152 |
|
inss1 |
|- ( E i^i ( F ` ( k + 1 ) ) ) C_ E |
153 |
|
ovolsscl |
|- ( ( ( E i^i ( F ` ( k + 1 ) ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. RR ) |
154 |
152 4 7 153
|
mp3an2ani |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. RR ) |
155 |
154
|
recnd |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. CC ) |
156 |
15
|
recnd |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. CC ) |
157 |
155 156
|
addcomd |
|- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
158 |
110 151 157
|
3eqtrd |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
159 |
|
seqp1 |
|- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) ) |
160 |
91 159
|
syl |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) ) |
161 |
97
|
ineq2d |
|- ( n = ( k + 1 ) -> ( E i^i ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) |
162 |
161
|
fveq2d |
|- ( n = ( k + 1 ) -> ( vol* ` ( E i^i ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) |
163 |
|
fvex |
|- ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. _V |
164 |
162 3 163
|
fvmpt |
|- ( ( k + 1 ) e. NN -> ( H ` ( k + 1 ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) |
165 |
113 164
|
syl |
|- ( ( ph /\ k e. NN ) -> ( H ` ( k + 1 ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) |
166 |
165
|
oveq2d |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
167 |
160 166
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
168 |
158 167
|
eqeq12d |
|- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) <-> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) ) |
169 |
104 168
|
syl5ibr |
|- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) |
170 |
103 169
|
anim12d |
|- ( ( ph /\ k e. NN ) -> ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) |
171 |
170
|
expcom |
|- ( k e. NN -> ( ph -> ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) |
172 |
171
|
a2d |
|- ( k e. NN -> ( ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) -> ( ph -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) |
173 |
41 50 59 50 82 172
|
nnind |
|- ( k e. NN -> ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) |
174 |
173
|
impcom |
|- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) |
175 |
174
|
simprd |
|- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) |
176 |
175
|
eqcomd |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
177 |
176
|
oveq1d |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E \ U. ran F ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U. ran F ) ) ) ) |
178 |
174
|
simpld |
|- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol ) |
179 |
|
mblsplit |
|- ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` E ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) |
180 |
178 28 7 179
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( vol* ` E ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) |
181 |
32 177 180
|
3brtr4d |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E \ U. ran F ) ) ) <_ ( vol* ` E ) ) |