| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliunlem.3 |  |-  ( ph -> F : NN --> dom vol ) | 
						
							| 2 |  | voliunlem.5 |  |-  ( ph -> Disj_ i e. NN ( F ` i ) ) | 
						
							| 3 |  | voliunlem1.6 |  |-  H = ( n e. NN |-> ( vol* ` ( E i^i ( F ` n ) ) ) ) | 
						
							| 4 |  | voliunlem1.7 |  |-  ( ph -> E C_ RR ) | 
						
							| 5 |  | voliunlem1.8 |  |-  ( ph -> ( vol* ` E ) e. RR ) | 
						
							| 6 |  | difss |  |-  ( E \ U. ran F ) C_ E | 
						
							| 7 | 5 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` E ) e. RR ) | 
						
							| 8 |  | ovolsscl |  |-  ( ( ( E \ U. ran F ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ U. ran F ) ) e. RR ) | 
						
							| 9 | 6 4 7 8 | mp3an2ani |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U. ran F ) ) e. RR ) | 
						
							| 10 |  | difss |  |-  ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E | 
						
							| 11 |  | ovolsscl |  |-  ( ( ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) | 
						
							| 12 | 10 4 7 11 | mp3an2ani |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) | 
						
							| 13 |  | inss1 |  |-  ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E | 
						
							| 14 |  | ovolsscl |  |-  ( ( ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) | 
						
							| 15 | 13 4 7 14 | mp3an2ani |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) | 
						
							| 16 |  | elfznn |  |-  ( n e. ( 1 ... k ) -> n e. NN ) | 
						
							| 17 | 1 | ffnd |  |-  ( ph -> F Fn NN ) | 
						
							| 18 |  | fnfvelrn |  |-  ( ( F Fn NN /\ n e. NN ) -> ( F ` n ) e. ran F ) | 
						
							| 19 | 17 18 | sylan |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. ran F ) | 
						
							| 20 |  | elssuni |  |-  ( ( F ` n ) e. ran F -> ( F ` n ) C_ U. ran F ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) | 
						
							| 22 | 16 21 | sylan2 |  |-  ( ( ph /\ n e. ( 1 ... k ) ) -> ( F ` n ) C_ U. ran F ) | 
						
							| 23 | 22 | ralrimiva |  |-  ( ph -> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ k e. NN ) -> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) | 
						
							| 25 |  | iunss |  |-  ( U_ n e. ( 1 ... k ) ( F ` n ) C_ U. ran F <-> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) | 
						
							| 27 | 26 | sscond |  |-  ( ( ph /\ k e. NN ) -> ( E \ U. ran F ) C_ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) | 
						
							| 28 | 4 | adantr |  |-  ( ( ph /\ k e. NN ) -> E C_ RR ) | 
						
							| 29 | 10 28 | sstrid |  |-  ( ( ph /\ k e. NN ) -> ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ RR ) | 
						
							| 30 |  | ovolss |  |-  ( ( ( E \ U. ran F ) C_ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) /\ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ RR ) -> ( vol* ` ( E \ U. ran F ) ) <_ ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) | 
						
							| 31 | 27 29 30 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U. ran F ) ) <_ ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) | 
						
							| 32 | 9 12 15 31 | leadd2dd |  |-  ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U. ran F ) ) ) <_ ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) | 
						
							| 33 |  | oveq2 |  |-  ( z = 1 -> ( 1 ... z ) = ( 1 ... 1 ) ) | 
						
							| 34 | 33 | iuneq1d |  |-  ( z = 1 -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... 1 ) ( F ` n ) ) | 
						
							| 35 | 34 | eleq1d |  |-  ( z = 1 -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol ) ) | 
						
							| 36 | 34 | ineq2d |  |-  ( z = 1 -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) | 
						
							| 37 | 36 | fveq2d |  |-  ( z = 1 -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( z = 1 -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` 1 ) ) | 
						
							| 39 | 37 38 | eqeq12d |  |-  ( z = 1 -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) | 
						
							| 40 | 35 39 | anbi12d |  |-  ( z = 1 -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) ) | 
						
							| 41 | 40 | imbi2d |  |-  ( z = 1 -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) ) ) | 
						
							| 42 |  | oveq2 |  |-  ( z = k -> ( 1 ... z ) = ( 1 ... k ) ) | 
						
							| 43 | 42 | iuneq1d |  |-  ( z = k -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... k ) ( F ` n ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( z = k -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol ) ) | 
						
							| 45 | 43 | ineq2d |  |-  ( z = k -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) | 
						
							| 46 | 45 | fveq2d |  |-  ( z = k -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) | 
						
							| 47 |  | fveq2 |  |-  ( z = k -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` k ) ) | 
						
							| 48 | 46 47 | eqeq12d |  |-  ( z = k -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) | 
						
							| 49 | 44 48 | anbi12d |  |-  ( z = k -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) | 
						
							| 50 | 49 | imbi2d |  |-  ( z = k -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) ) | 
						
							| 51 |  | oveq2 |  |-  ( z = ( k + 1 ) -> ( 1 ... z ) = ( 1 ... ( k + 1 ) ) ) | 
						
							| 52 | 51 | iuneq1d |  |-  ( z = ( k + 1 ) -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) | 
						
							| 53 | 52 | eleq1d |  |-  ( z = ( k + 1 ) -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol ) ) | 
						
							| 54 | 52 | ineq2d |  |-  ( z = ( k + 1 ) -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) | 
						
							| 55 | 54 | fveq2d |  |-  ( z = ( k + 1 ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) ) | 
						
							| 56 |  | fveq2 |  |-  ( z = ( k + 1 ) -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) | 
						
							| 57 | 55 56 | eqeq12d |  |-  ( z = ( k + 1 ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) | 
						
							| 58 | 53 57 | anbi12d |  |-  ( z = ( k + 1 ) -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) | 
						
							| 59 | 58 | imbi2d |  |-  ( z = ( k + 1 ) -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) | 
						
							| 60 |  | 1z |  |-  1 e. ZZ | 
						
							| 61 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 62 |  | iuneq1 |  |-  ( ( 1 ... 1 ) = { 1 } -> U_ n e. ( 1 ... 1 ) ( F ` n ) = U_ n e. { 1 } ( F ` n ) ) | 
						
							| 63 | 60 61 62 | mp2b |  |-  U_ n e. ( 1 ... 1 ) ( F ` n ) = U_ n e. { 1 } ( F ` n ) | 
						
							| 64 |  | 1ex |  |-  1 e. _V | 
						
							| 65 |  | fveq2 |  |-  ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) | 
						
							| 66 | 64 65 | iunxsn |  |-  U_ n e. { 1 } ( F ` n ) = ( F ` 1 ) | 
						
							| 67 | 63 66 | eqtri |  |-  U_ n e. ( 1 ... 1 ) ( F ` n ) = ( F ` 1 ) | 
						
							| 68 |  | 1nn |  |-  1 e. NN | 
						
							| 69 |  | ffvelcdm |  |-  ( ( F : NN --> dom vol /\ 1 e. NN ) -> ( F ` 1 ) e. dom vol ) | 
						
							| 70 | 1 68 69 | sylancl |  |-  ( ph -> ( F ` 1 ) e. dom vol ) | 
						
							| 71 | 67 70 | eqeltrid |  |-  ( ph -> U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol ) | 
						
							| 72 | 65 | ineq2d |  |-  ( n = 1 -> ( E i^i ( F ` n ) ) = ( E i^i ( F ` 1 ) ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( n = 1 -> ( vol* ` ( E i^i ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) ) | 
						
							| 74 |  | fvex |  |-  ( vol* ` ( E i^i ( F ` 1 ) ) ) e. _V | 
						
							| 75 | 73 3 74 | fvmpt |  |-  ( 1 e. NN -> ( H ` 1 ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) ) | 
						
							| 76 | 68 75 | ax-mp |  |-  ( H ` 1 ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) | 
						
							| 77 |  | seq1 |  |-  ( 1 e. ZZ -> ( seq 1 ( + , H ) ` 1 ) = ( H ` 1 ) ) | 
						
							| 78 | 60 77 | ax-mp |  |-  ( seq 1 ( + , H ) ` 1 ) = ( H ` 1 ) | 
						
							| 79 | 67 | ineq2i |  |-  ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) = ( E i^i ( F ` 1 ) ) | 
						
							| 80 | 79 | fveq2i |  |-  ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) | 
						
							| 81 | 76 78 80 | 3eqtr4ri |  |-  ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) | 
						
							| 82 | 71 81 | jctir |  |-  ( ph -> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) | 
						
							| 83 |  | peano2nn |  |-  ( k e. NN -> ( k + 1 ) e. NN ) | 
						
							| 84 |  | ffvelcdm |  |-  ( ( F : NN --> dom vol /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. dom vol ) | 
						
							| 85 | 1 83 84 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. dom vol ) | 
						
							| 86 |  | unmbl |  |-  ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( F ` ( k + 1 ) ) e. dom vol ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) | 
						
							| 87 | 86 | ex |  |-  ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> ( ( F ` ( k + 1 ) ) e. dom vol -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) | 
						
							| 88 | 85 87 | syl5com |  |-  ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) | 
						
							| 89 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 90 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 91 | 89 90 | eleqtrdi |  |-  ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) | 
						
							| 92 |  | fzsuc |  |-  ( k e. ( ZZ>= ` 1 ) -> ( 1 ... ( k + 1 ) ) = ( ( 1 ... k ) u. { ( k + 1 ) } ) ) | 
						
							| 93 |  | iuneq1 |  |-  ( ( 1 ... ( k + 1 ) ) = ( ( 1 ... k ) u. { ( k + 1 ) } ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) ) | 
						
							| 94 | 91 92 93 | 3syl |  |-  ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) ) | 
						
							| 95 |  | iunxun |  |-  U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. U_ n e. { ( k + 1 ) } ( F ` n ) ) | 
						
							| 96 |  | ovex |  |-  ( k + 1 ) e. _V | 
						
							| 97 |  | fveq2 |  |-  ( n = ( k + 1 ) -> ( F ` n ) = ( F ` ( k + 1 ) ) ) | 
						
							| 98 | 96 97 | iunxsn |  |-  U_ n e. { ( k + 1 ) } ( F ` n ) = ( F ` ( k + 1 ) ) | 
						
							| 99 | 98 | uneq2i |  |-  ( U_ n e. ( 1 ... k ) ( F ` n ) u. U_ n e. { ( k + 1 ) } ( F ` n ) ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) | 
						
							| 100 | 95 99 | eqtri |  |-  U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) | 
						
							| 101 | 94 100 | eqtrdi |  |-  ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) ) | 
						
							| 102 | 101 | eleq1d |  |-  ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol <-> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) | 
						
							| 103 | 88 102 | sylibrd |  |-  ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol ) ) | 
						
							| 104 |  | oveq1 |  |-  ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 105 |  | inss1 |  |-  ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ E | 
						
							| 106 | 105 28 | sstrid |  |-  ( ( ph /\ k e. NN ) -> ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ RR ) | 
						
							| 107 |  | ovolsscl |  |-  ( ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) | 
						
							| 108 | 105 4 7 107 | mp3an2ani |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) | 
						
							| 109 |  | mblsplit |  |-  ( ( ( F ` ( k + 1 ) ) e. dom vol /\ ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ RR /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 110 | 85 106 108 109 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 111 |  | in32 |  |-  ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) = ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) | 
						
							| 112 |  | inss2 |  |-  ( E i^i ( F ` ( k + 1 ) ) ) C_ ( F ` ( k + 1 ) ) | 
						
							| 113 | 83 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) | 
						
							| 114 | 113 90 | eleqtrdi |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 115 |  | eluzfz2 |  |-  ( ( k + 1 ) e. ( ZZ>= ` 1 ) -> ( k + 1 ) e. ( 1 ... ( k + 1 ) ) ) | 
						
							| 116 | 97 | ssiun2s |  |-  ( ( k + 1 ) e. ( 1 ... ( k + 1 ) ) -> ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) | 
						
							| 117 | 114 115 116 | 3syl |  |-  ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) | 
						
							| 118 | 112 117 | sstrid |  |-  ( ( ph /\ k e. NN ) -> ( E i^i ( F ` ( k + 1 ) ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) | 
						
							| 119 |  | dfss2 |  |-  ( ( E i^i ( F ` ( k + 1 ) ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) | 
						
							| 120 | 118 119 | sylib |  |-  ( ( ph /\ k e. NN ) -> ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) | 
						
							| 121 | 111 120 | eqtrid |  |-  ( ( ph /\ k e. NN ) -> ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) | 
						
							| 122 | 121 | fveq2d |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 123 |  | indif2 |  |-  ( E i^i ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) ) = ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) | 
						
							| 124 |  | uncom |  |-  ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) = ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) | 
						
							| 125 | 101 124 | eqtr2di |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) | 
						
							| 126 | 2 | ad2antrr |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> Disj_ i e. NN ( F ` i ) ) | 
						
							| 127 | 113 | adantr |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( k + 1 ) e. NN ) | 
						
							| 128 | 16 | adantl |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. NN ) | 
						
							| 129 | 128 | nnred |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. RR ) | 
						
							| 130 |  | elfzle2 |  |-  ( n e. ( 1 ... k ) -> n <_ k ) | 
						
							| 131 | 130 | adantl |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n <_ k ) | 
						
							| 132 | 89 | adantr |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> k e. NN ) | 
						
							| 133 |  | nnleltp1 |  |-  ( ( n e. NN /\ k e. NN ) -> ( n <_ k <-> n < ( k + 1 ) ) ) | 
						
							| 134 | 128 132 133 | syl2anc |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( n <_ k <-> n < ( k + 1 ) ) ) | 
						
							| 135 | 131 134 | mpbid |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n < ( k + 1 ) ) | 
						
							| 136 | 129 135 | gtned |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( k + 1 ) =/= n ) | 
						
							| 137 |  | fveq2 |  |-  ( i = ( k + 1 ) -> ( F ` i ) = ( F ` ( k + 1 ) ) ) | 
						
							| 138 |  | fveq2 |  |-  ( i = n -> ( F ` i ) = ( F ` n ) ) | 
						
							| 139 | 137 138 | disji2 |  |-  ( ( Disj_ i e. NN ( F ` i ) /\ ( ( k + 1 ) e. NN /\ n e. NN ) /\ ( k + 1 ) =/= n ) -> ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = (/) ) | 
						
							| 140 | 126 127 128 136 139 | syl121anc |  |-  ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = (/) ) | 
						
							| 141 | 140 | iuneq2dv |  |-  ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = U_ n e. ( 1 ... k ) (/) ) | 
						
							| 142 |  | iunin2 |  |-  U_ n e. ( 1 ... k ) ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) | 
						
							| 143 |  | iun0 |  |-  U_ n e. ( 1 ... k ) (/) = (/) | 
						
							| 144 | 141 142 143 | 3eqtr3g |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) = (/) ) | 
						
							| 145 |  | uneqdifeq |  |-  ( ( ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) /\ ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) = (/) ) -> ( ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) ) | 
						
							| 146 | 117 144 145 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) ) | 
						
							| 147 | 125 146 | mpbid |  |-  ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) | 
						
							| 148 | 147 | ineq2d |  |-  ( ( ph /\ k e. NN ) -> ( E i^i ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) | 
						
							| 149 | 123 148 | eqtr3id |  |-  ( ( ph /\ k e. NN ) -> ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) | 
						
							| 150 | 149 | fveq2d |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) | 
						
							| 151 | 122 150 | oveq12d |  |-  ( ( ph /\ k e. NN ) -> ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) = ( ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) | 
						
							| 152 |  | inss1 |  |-  ( E i^i ( F ` ( k + 1 ) ) ) C_ E | 
						
							| 153 |  | ovolsscl |  |-  ( ( ( E i^i ( F ` ( k + 1 ) ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. RR ) | 
						
							| 154 | 152 4 7 153 | mp3an2ani |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. RR ) | 
						
							| 155 | 154 | recnd |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. CC ) | 
						
							| 156 | 15 | recnd |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. CC ) | 
						
							| 157 | 155 156 | addcomd |  |-  ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 158 | 110 151 157 | 3eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 159 |  | seqp1 |  |-  ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) ) | 
						
							| 160 | 91 159 | syl |  |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) ) | 
						
							| 161 | 97 | ineq2d |  |-  ( n = ( k + 1 ) -> ( E i^i ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) | 
						
							| 162 | 161 | fveq2d |  |-  ( n = ( k + 1 ) -> ( vol* ` ( E i^i ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 163 |  | fvex |  |-  ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. _V | 
						
							| 164 | 162 3 163 | fvmpt |  |-  ( ( k + 1 ) e. NN -> ( H ` ( k + 1 ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 165 | 113 164 | syl |  |-  ( ( ph /\ k e. NN ) -> ( H ` ( k + 1 ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 166 | 165 | oveq2d |  |-  ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 167 | 160 166 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) | 
						
							| 168 | 158 167 | eqeq12d |  |-  ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) <-> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) ) | 
						
							| 169 | 104 168 | imbitrrid |  |-  ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) | 
						
							| 170 | 103 169 | anim12d |  |-  ( ( ph /\ k e. NN ) -> ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) | 
						
							| 171 | 170 | expcom |  |-  ( k e. NN -> ( ph -> ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) | 
						
							| 172 | 171 | a2d |  |-  ( k e. NN -> ( ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) -> ( ph -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) | 
						
							| 173 | 41 50 59 50 82 172 | nnind |  |-  ( k e. NN -> ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) | 
						
							| 174 | 173 | impcom |  |-  ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) | 
						
							| 175 | 174 | simprd |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) | 
						
							| 176 | 175 | eqcomd |  |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) | 
						
							| 177 | 176 | oveq1d |  |-  ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E \ U. ran F ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U. ran F ) ) ) ) | 
						
							| 178 | 174 | simpld |  |-  ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol ) | 
						
							| 179 |  | mblsplit |  |-  ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` E ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) | 
						
							| 180 | 178 28 7 179 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> ( vol* ` E ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) | 
						
							| 181 | 32 177 180 | 3brtr4d |  |-  ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E \ U. ran F ) ) ) <_ ( vol* ` E ) ) |