| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliunlem.3 |  |-  ( ph -> F : NN --> dom vol ) | 
						
							| 2 |  | voliunlem.5 |  |-  ( ph -> Disj_ i e. NN ( F ` i ) ) | 
						
							| 3 |  | voliunlem.6 |  |-  H = ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) | 
						
							| 4 | 1 | frnd |  |-  ( ph -> ran F C_ dom vol ) | 
						
							| 5 |  | mblss |  |-  ( x e. dom vol -> x C_ RR ) | 
						
							| 6 |  | velpw |  |-  ( x e. ~P RR <-> x C_ RR ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( x e. dom vol -> x e. ~P RR ) | 
						
							| 8 | 7 | ssriv |  |-  dom vol C_ ~P RR | 
						
							| 9 | 4 8 | sstrdi |  |-  ( ph -> ran F C_ ~P RR ) | 
						
							| 10 |  | sspwuni |  |-  ( ran F C_ ~P RR <-> U. ran F C_ RR ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ph -> U. ran F C_ RR ) | 
						
							| 12 |  | elpwi |  |-  ( x e. ~P RR -> x C_ RR ) | 
						
							| 13 |  | inundif |  |-  ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) = x | 
						
							| 14 | 13 | fveq2i |  |-  ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) = ( vol* ` x ) | 
						
							| 15 |  | inss1 |  |-  ( x i^i U. ran F ) C_ x | 
						
							| 16 |  | simp2 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) | 
						
							| 17 | 15 16 | sstrid |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i U. ran F ) C_ RR ) | 
						
							| 18 |  | ovolsscl |  |-  ( ( ( x i^i U. ran F ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) | 
						
							| 19 | 15 18 | mp3an1 |  |-  ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) | 
						
							| 20 | 19 | 3adant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) | 
						
							| 21 |  | difss |  |-  ( x \ U. ran F ) C_ x | 
						
							| 22 | 21 16 | sstrid |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ U. ran F ) C_ RR ) | 
						
							| 23 |  | ovolsscl |  |-  ( ( ( x \ U. ran F ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) | 
						
							| 24 | 21 23 | mp3an1 |  |-  ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) | 
						
							| 25 | 24 | 3adant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) | 
						
							| 26 |  | ovolun |  |-  ( ( ( ( x i^i U. ran F ) C_ RR /\ ( vol* ` ( x i^i U. ran F ) ) e. RR ) /\ ( ( x \ U. ran F ) C_ RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR ) ) -> ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 27 | 17 20 22 25 26 | syl22anc |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 28 | 14 27 | eqbrtrrid |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 29 | 20 | rexrd |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR* ) | 
						
							| 30 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 31 |  | 1zzd |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> 1 e. ZZ ) | 
						
							| 32 |  | fveq2 |  |-  ( n = k -> ( F ` n ) = ( F ` k ) ) | 
						
							| 33 | 32 | ineq2d |  |-  ( n = k -> ( x i^i ( F ` n ) ) = ( x i^i ( F ` k ) ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( n = k -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) | 
						
							| 35 |  | fvex |  |-  ( vol* ` ( x i^i ( F ` k ) ) ) e. _V | 
						
							| 36 | 34 3 35 | fvmpt |  |-  ( k e. NN -> ( H ` k ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( H ` k ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) | 
						
							| 38 |  | inss1 |  |-  ( x i^i ( F ` k ) ) C_ x | 
						
							| 39 |  | ovolsscl |  |-  ( ( ( x i^i ( F ` k ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) | 
						
							| 40 | 38 39 | mp3an1 |  |-  ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) | 
						
							| 41 | 40 | 3adant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) | 
						
							| 43 | 37 42 | eqeltrd |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( H ` k ) e. RR ) | 
						
							| 44 | 30 31 43 | serfre |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> seq 1 ( + , H ) : NN --> RR ) | 
						
							| 45 | 44 | frnd |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ran seq 1 ( + , H ) C_ RR ) | 
						
							| 46 |  | ressxr |  |-  RR C_ RR* | 
						
							| 47 | 45 46 | sstrdi |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ran seq 1 ( + , H ) C_ RR* ) | 
						
							| 48 |  | supxrcl |  |-  ( ran seq 1 ( + , H ) C_ RR* -> sup ( ran seq 1 ( + , H ) , RR* , < ) e. RR* ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> sup ( ran seq 1 ( + , H ) , RR* , < ) e. RR* ) | 
						
							| 50 |  | simp3 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. RR ) | 
						
							| 51 | 50 25 | resubcld |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR ) | 
						
							| 52 | 51 | rexrd |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR* ) | 
						
							| 53 |  | iunin2 |  |-  U_ n e. NN ( x i^i ( F ` n ) ) = ( x i^i U_ n e. NN ( F ` n ) ) | 
						
							| 54 |  | ffn |  |-  ( F : NN --> dom vol -> F Fn NN ) | 
						
							| 55 |  | fniunfv |  |-  ( F Fn NN -> U_ n e. NN ( F ` n ) = U. ran F ) | 
						
							| 56 | 1 54 55 | 3syl |  |-  ( ph -> U_ n e. NN ( F ` n ) = U. ran F ) | 
						
							| 57 | 56 | 3ad2ant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> U_ n e. NN ( F ` n ) = U. ran F ) | 
						
							| 58 | 57 | ineq2d |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i U_ n e. NN ( F ` n ) ) = ( x i^i U. ran F ) ) | 
						
							| 59 | 53 58 | eqtrid |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> U_ n e. NN ( x i^i ( F ` n ) ) = ( x i^i U. ran F ) ) | 
						
							| 60 | 59 | fveq2d |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` U_ n e. NN ( x i^i ( F ` n ) ) ) = ( vol* ` ( x i^i U. ran F ) ) ) | 
						
							| 61 |  | eqid |  |-  seq 1 ( + , H ) = seq 1 ( + , H ) | 
						
							| 62 |  | inss1 |  |-  ( x i^i ( F ` n ) ) C_ x | 
						
							| 63 | 62 16 | sstrid |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i ( F ` n ) ) C_ RR ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) C_ RR ) | 
						
							| 65 |  | ovolsscl |  |-  ( ( ( x i^i ( F ` n ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) | 
						
							| 66 | 62 65 | mp3an1 |  |-  ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) | 
						
							| 67 | 66 | 3adant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) | 
						
							| 69 | 61 3 64 68 | ovoliun |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` U_ n e. NN ( x i^i ( F ` n ) ) ) <_ sup ( ran seq 1 ( + , H ) , RR* , < ) ) | 
						
							| 70 | 60 69 | eqbrtrrd |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) <_ sup ( ran seq 1 ( + , H ) , RR* , < ) ) | 
						
							| 71 | 1 | 3ad2ant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> F : NN --> dom vol ) | 
						
							| 72 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> Disj_ i e. NN ( F ` i ) ) | 
						
							| 73 | 71 72 3 16 50 | voliunlem1 |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) | 
						
							| 74 | 44 | ffvelcdmda |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) e. RR ) | 
						
							| 75 | 25 | adantr |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) | 
						
							| 76 |  | simpl3 |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` x ) e. RR ) | 
						
							| 77 |  | leaddsub |  |-  ( ( ( seq 1 ( + , H ) ` k ) e. RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR /\ ( vol* ` x ) e. RR ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 78 | 74 75 76 77 | syl3anc |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 79 | 73 78 | mpbid |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 80 | 79 | ralrimiva |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 81 |  | ffn |  |-  ( seq 1 ( + , H ) : NN --> RR -> seq 1 ( + , H ) Fn NN ) | 
						
							| 82 |  | breq1 |  |-  ( z = ( seq 1 ( + , H ) ` k ) -> ( z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 83 | 82 | ralrn |  |-  ( seq 1 ( + , H ) Fn NN -> ( A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 84 | 44 81 83 | 3syl |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 85 | 80 84 | mpbird |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 86 |  | supxrleub |  |-  ( ( ran seq 1 ( + , H ) C_ RR* /\ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR* ) -> ( sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 87 | 47 52 86 | syl2anc |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 88 | 85 87 | mpbird |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 89 | 29 49 52 70 88 | xrletrd |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 90 |  | leaddsub |  |-  ( ( ( vol* ` ( x i^i U. ran F ) ) e. RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR /\ ( vol* ` x ) e. RR ) -> ( ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 91 | 20 25 50 90 | syl3anc |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 92 | 89 91 | mpbird |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) | 
						
							| 93 | 20 25 | readdcld |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) e. RR ) | 
						
							| 94 | 50 93 | letri3d |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <-> ( ( vol* ` x ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) /\ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) | 
						
							| 95 | 28 92 94 | mpbir2and |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) | 
						
							| 96 | 95 | 3expia |  |-  ( ( ph /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 97 | 12 96 | sylan2 |  |-  ( ( ph /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 98 | 97 | ralrimiva |  |-  ( ph -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) | 
						
							| 99 |  | ismbl |  |-  ( U. ran F e. dom vol <-> ( U. ran F C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) ) | 
						
							| 100 | 11 98 99 | sylanbrc |  |-  ( ph -> U. ran F e. dom vol ) |