Step |
Hyp |
Ref |
Expression |
1 |
|
voliunlem.3 |
|- ( ph -> F : NN --> dom vol ) |
2 |
|
voliunlem.5 |
|- ( ph -> Disj_ i e. NN ( F ` i ) ) |
3 |
|
voliunlem.6 |
|- H = ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) |
4 |
|
voliunlem3.1 |
|- S = seq 1 ( + , G ) |
5 |
|
voliunlem3.2 |
|- G = ( n e. NN |-> ( vol ` ( F ` n ) ) ) |
6 |
|
voliunlem3.4 |
|- ( ph -> A. i e. NN ( vol ` ( F ` i ) ) e. RR ) |
7 |
1 2 3
|
voliunlem2 |
|- ( ph -> U. ran F e. dom vol ) |
8 |
|
mblvol |
|- ( U. ran F e. dom vol -> ( vol ` U. ran F ) = ( vol* ` U. ran F ) ) |
9 |
7 8
|
syl |
|- ( ph -> ( vol ` U. ran F ) = ( vol* ` U. ran F ) ) |
10 |
1
|
frnd |
|- ( ph -> ran F C_ dom vol ) |
11 |
|
mblss |
|- ( x e. dom vol -> x C_ RR ) |
12 |
|
reex |
|- RR e. _V |
13 |
12
|
elpw2 |
|- ( x e. ~P RR <-> x C_ RR ) |
14 |
11 13
|
sylibr |
|- ( x e. dom vol -> x e. ~P RR ) |
15 |
14
|
ssriv |
|- dom vol C_ ~P RR |
16 |
10 15
|
sstrdi |
|- ( ph -> ran F C_ ~P RR ) |
17 |
|
sspwuni |
|- ( ran F C_ ~P RR <-> U. ran F C_ RR ) |
18 |
16 17
|
sylib |
|- ( ph -> U. ran F C_ RR ) |
19 |
|
ovolcl |
|- ( U. ran F C_ RR -> ( vol* ` U. ran F ) e. RR* ) |
20 |
18 19
|
syl |
|- ( ph -> ( vol* ` U. ran F ) e. RR* ) |
21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
22 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
23 |
|
2fveq3 |
|- ( n = k -> ( vol ` ( F ` n ) ) = ( vol ` ( F ` k ) ) ) |
24 |
|
fvex |
|- ( vol ` ( F ` k ) ) e. _V |
25 |
23 5 24
|
fvmpt |
|- ( k e. NN -> ( G ` k ) = ( vol ` ( F ` k ) ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) = ( vol ` ( F ` k ) ) ) |
27 |
|
2fveq3 |
|- ( i = k -> ( vol ` ( F ` i ) ) = ( vol ` ( F ` k ) ) ) |
28 |
27
|
eleq1d |
|- ( i = k -> ( ( vol ` ( F ` i ) ) e. RR <-> ( vol ` ( F ` k ) ) e. RR ) ) |
29 |
28
|
rspccva |
|- ( ( A. i e. NN ( vol ` ( F ` i ) ) e. RR /\ k e. NN ) -> ( vol ` ( F ` k ) ) e. RR ) |
30 |
6 29
|
sylan |
|- ( ( ph /\ k e. NN ) -> ( vol ` ( F ` k ) ) e. RR ) |
31 |
26 30
|
eqeltrd |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) e. RR ) |
32 |
21 22 31
|
serfre |
|- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
33 |
4
|
feq1i |
|- ( S : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) |
34 |
32 33
|
sylibr |
|- ( ph -> S : NN --> RR ) |
35 |
34
|
frnd |
|- ( ph -> ran S C_ RR ) |
36 |
|
ressxr |
|- RR C_ RR* |
37 |
35 36
|
sstrdi |
|- ( ph -> ran S C_ RR* ) |
38 |
|
supxrcl |
|- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
39 |
37 38
|
syl |
|- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
40 |
|
eqid |
|- seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) |
41 |
|
eqid |
|- ( n e. NN |-> ( vol* ` ( F ` n ) ) ) = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) |
42 |
1
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. dom vol ) |
43 |
|
mblss |
|- ( ( F ` n ) e. dom vol -> ( F ` n ) C_ RR ) |
44 |
42 43
|
syl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) C_ RR ) |
45 |
|
mblvol |
|- ( ( F ` n ) e. dom vol -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) |
46 |
42 45
|
syl |
|- ( ( ph /\ n e. NN ) -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) |
47 |
|
2fveq3 |
|- ( i = n -> ( vol ` ( F ` i ) ) = ( vol ` ( F ` n ) ) ) |
48 |
47
|
eleq1d |
|- ( i = n -> ( ( vol ` ( F ` i ) ) e. RR <-> ( vol ` ( F ` n ) ) e. RR ) ) |
49 |
48
|
rspccva |
|- ( ( A. i e. NN ( vol ` ( F ` i ) ) e. RR /\ n e. NN ) -> ( vol ` ( F ` n ) ) e. RR ) |
50 |
6 49
|
sylan |
|- ( ( ph /\ n e. NN ) -> ( vol ` ( F ` n ) ) e. RR ) |
51 |
46 50
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( vol* ` ( F ` n ) ) e. RR ) |
52 |
40 41 44 51
|
ovoliun |
|- ( ph -> ( vol* ` U_ n e. NN ( F ` n ) ) <_ sup ( ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) , RR* , < ) ) |
53 |
1
|
ffnd |
|- ( ph -> F Fn NN ) |
54 |
|
fniunfv |
|- ( F Fn NN -> U_ n e. NN ( F ` n ) = U. ran F ) |
55 |
53 54
|
syl |
|- ( ph -> U_ n e. NN ( F ` n ) = U. ran F ) |
56 |
55
|
fveq2d |
|- ( ph -> ( vol* ` U_ n e. NN ( F ` n ) ) = ( vol* ` U. ran F ) ) |
57 |
46
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( vol ` ( F ` n ) ) ) = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) |
58 |
5 57
|
eqtrid |
|- ( ph -> G = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) |
59 |
58
|
seqeq3d |
|- ( ph -> seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) ) |
60 |
4 59
|
eqtr2id |
|- ( ph -> seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = S ) |
61 |
60
|
rneqd |
|- ( ph -> ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = ran S ) |
62 |
61
|
supeq1d |
|- ( ph -> sup ( ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) , RR* , < ) = sup ( ran S , RR* , < ) ) |
63 |
52 56 62
|
3brtr3d |
|- ( ph -> ( vol* ` U. ran F ) <_ sup ( ran S , RR* , < ) ) |
64 |
|
ovolge0 |
|- ( U. ran F C_ RR -> 0 <_ ( vol* ` U. ran F ) ) |
65 |
18 64
|
syl |
|- ( ph -> 0 <_ ( vol* ` U. ran F ) ) |
66 |
|
mnflt0 |
|- -oo < 0 |
67 |
|
mnfxr |
|- -oo e. RR* |
68 |
|
0xr |
|- 0 e. RR* |
69 |
|
xrltletr |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ ( vol* ` U. ran F ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( vol* ` U. ran F ) ) -> -oo < ( vol* ` U. ran F ) ) ) |
70 |
67 68 69
|
mp3an12 |
|- ( ( vol* ` U. ran F ) e. RR* -> ( ( -oo < 0 /\ 0 <_ ( vol* ` U. ran F ) ) -> -oo < ( vol* ` U. ran F ) ) ) |
71 |
66 70
|
mpani |
|- ( ( vol* ` U. ran F ) e. RR* -> ( 0 <_ ( vol* ` U. ran F ) -> -oo < ( vol* ` U. ran F ) ) ) |
72 |
20 65 71
|
sylc |
|- ( ph -> -oo < ( vol* ` U. ran F ) ) |
73 |
|
xrrebnd |
|- ( ( vol* ` U. ran F ) e. RR* -> ( ( vol* ` U. ran F ) e. RR <-> ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) ) ) |
74 |
20 73
|
syl |
|- ( ph -> ( ( vol* ` U. ran F ) e. RR <-> ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) ) ) |
75 |
12
|
elpw2 |
|- ( U. ran F e. ~P RR <-> U. ran F C_ RR ) |
76 |
18 75
|
sylibr |
|- ( ph -> U. ran F e. ~P RR ) |
77 |
|
simpl |
|- ( ( x = U. ran F /\ ph ) -> x = U. ran F ) |
78 |
77
|
sseq1d |
|- ( ( x = U. ran F /\ ph ) -> ( x C_ RR <-> U. ran F C_ RR ) ) |
79 |
77
|
fveq2d |
|- ( ( x = U. ran F /\ ph ) -> ( vol* ` x ) = ( vol* ` U. ran F ) ) |
80 |
79
|
eleq1d |
|- ( ( x = U. ran F /\ ph ) -> ( ( vol* ` x ) e. RR <-> ( vol* ` U. ran F ) e. RR ) ) |
81 |
|
simpll |
|- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> x = U. ran F ) |
82 |
81
|
ineq1d |
|- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) = ( U. ran F i^i ( F ` n ) ) ) |
83 |
|
fnfvelrn |
|- ( ( F Fn NN /\ n e. NN ) -> ( F ` n ) e. ran F ) |
84 |
53 83
|
sylan |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ran F ) |
85 |
|
elssuni |
|- ( ( F ` n ) e. ran F -> ( F ` n ) C_ U. ran F ) |
86 |
84 85
|
syl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) |
87 |
86
|
adantll |
|- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) |
88 |
|
sseqin2 |
|- ( ( F ` n ) C_ U. ran F <-> ( U. ran F i^i ( F ` n ) ) = ( F ` n ) ) |
89 |
87 88
|
sylib |
|- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( U. ran F i^i ( F ` n ) ) = ( F ` n ) ) |
90 |
82 89
|
eqtrd |
|- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) = ( F ` n ) ) |
91 |
90
|
fveq2d |
|- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol* ` ( F ` n ) ) ) |
92 |
46
|
adantll |
|- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) |
93 |
91 92
|
eqtr4d |
|- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol ` ( F ` n ) ) ) |
94 |
93
|
mpteq2dva |
|- ( ( x = U. ran F /\ ph ) -> ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( F ` n ) ) ) ) |
95 |
94
|
adantrr |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( F ` n ) ) ) ) |
96 |
95 3 5
|
3eqtr4g |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> H = G ) |
97 |
96
|
seqeq3d |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> seq 1 ( + , H ) = seq 1 ( + , G ) ) |
98 |
97 4
|
eqtr4di |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> seq 1 ( + , H ) = S ) |
99 |
98
|
fveq1d |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( seq 1 ( + , H ) ` k ) = ( S ` k ) ) |
100 |
|
difeq1 |
|- ( x = U. ran F -> ( x \ U. ran F ) = ( U. ran F \ U. ran F ) ) |
101 |
|
difid |
|- ( U. ran F \ U. ran F ) = (/) |
102 |
100 101
|
eqtrdi |
|- ( x = U. ran F -> ( x \ U. ran F ) = (/) ) |
103 |
102
|
fveq2d |
|- ( x = U. ran F -> ( vol* ` ( x \ U. ran F ) ) = ( vol* ` (/) ) ) |
104 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
105 |
103 104
|
eqtrdi |
|- ( x = U. ran F -> ( vol* ` ( x \ U. ran F ) ) = 0 ) |
106 |
105
|
adantr |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( vol* ` ( x \ U. ran F ) ) = 0 ) |
107 |
99 106
|
oveq12d |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) = ( ( S ` k ) + 0 ) ) |
108 |
34
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( S ` k ) e. RR ) |
109 |
108
|
adantl |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( S ` k ) e. RR ) |
110 |
109
|
recnd |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( S ` k ) e. CC ) |
111 |
110
|
addid1d |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( S ` k ) + 0 ) = ( S ` k ) ) |
112 |
107 111
|
eqtrd |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) = ( S ` k ) ) |
113 |
|
fveq2 |
|- ( x = U. ran F -> ( vol* ` x ) = ( vol* ` U. ran F ) ) |
114 |
113
|
adantr |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( vol* ` x ) = ( vol* ` U. ran F ) ) |
115 |
112 114
|
breq12d |
|- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
116 |
115
|
expr |
|- ( ( x = U. ran F /\ ph ) -> ( k e. NN -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
117 |
116
|
pm5.74d |
|- ( ( x = U. ran F /\ ph ) -> ( ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) <-> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
118 |
80 117
|
imbi12d |
|- ( ( x = U. ran F /\ ph ) -> ( ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) <-> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) |
119 |
78 118
|
imbi12d |
|- ( ( x = U. ran F /\ ph ) -> ( ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) <-> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) |
120 |
119
|
pm5.74da |
|- ( x = U. ran F -> ( ( ph -> ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) ) <-> ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) ) |
121 |
1
|
3ad2ant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> F : NN --> dom vol ) |
122 |
2
|
3ad2ant1 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> Disj_ i e. NN ( F ` i ) ) |
123 |
|
simp2 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) |
124 |
|
simp3 |
|- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. RR ) |
125 |
121 122 3 123 124
|
voliunlem1 |
|- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) |
126 |
125
|
3exp1 |
|- ( ph -> ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) ) |
127 |
120 126
|
vtoclg |
|- ( U. ran F e. ~P RR -> ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) |
128 |
76 127
|
mpcom |
|- ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) |
129 |
18 128
|
mpd |
|- ( ph -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
130 |
74 129
|
sylbird |
|- ( ph -> ( ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
131 |
72 130
|
mpand |
|- ( ph -> ( ( vol* ` U. ran F ) < +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
132 |
|
nltpnft |
|- ( ( vol* ` U. ran F ) e. RR* -> ( ( vol* ` U. ran F ) = +oo <-> -. ( vol* ` U. ran F ) < +oo ) ) |
133 |
20 132
|
syl |
|- ( ph -> ( ( vol* ` U. ran F ) = +oo <-> -. ( vol* ` U. ran F ) < +oo ) ) |
134 |
|
rexr |
|- ( ( S ` k ) e. RR -> ( S ` k ) e. RR* ) |
135 |
|
pnfge |
|- ( ( S ` k ) e. RR* -> ( S ` k ) <_ +oo ) |
136 |
108 134 135
|
3syl |
|- ( ( ph /\ k e. NN ) -> ( S ` k ) <_ +oo ) |
137 |
136
|
ex |
|- ( ph -> ( k e. NN -> ( S ` k ) <_ +oo ) ) |
138 |
|
breq2 |
|- ( ( vol* ` U. ran F ) = +oo -> ( ( S ` k ) <_ ( vol* ` U. ran F ) <-> ( S ` k ) <_ +oo ) ) |
139 |
138
|
imbi2d |
|- ( ( vol* ` U. ran F ) = +oo -> ( ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) <-> ( k e. NN -> ( S ` k ) <_ +oo ) ) ) |
140 |
137 139
|
syl5ibrcom |
|- ( ph -> ( ( vol* ` U. ran F ) = +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
141 |
133 140
|
sylbird |
|- ( ph -> ( -. ( vol* ` U. ran F ) < +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
142 |
131 141
|
pm2.61d |
|- ( ph -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
143 |
142
|
ralrimiv |
|- ( ph -> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) |
144 |
34
|
ffnd |
|- ( ph -> S Fn NN ) |
145 |
|
breq1 |
|- ( z = ( S ` k ) -> ( z <_ ( vol* ` U. ran F ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
146 |
145
|
ralrn |
|- ( S Fn NN -> ( A. z e. ran S z <_ ( vol* ` U. ran F ) <-> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
147 |
144 146
|
syl |
|- ( ph -> ( A. z e. ran S z <_ ( vol* ` U. ran F ) <-> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
148 |
143 147
|
mpbird |
|- ( ph -> A. z e. ran S z <_ ( vol* ` U. ran F ) ) |
149 |
|
supxrleub |
|- ( ( ran S C_ RR* /\ ( vol* ` U. ran F ) e. RR* ) -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) <-> A. z e. ran S z <_ ( vol* ` U. ran F ) ) ) |
150 |
37 20 149
|
syl2anc |
|- ( ph -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) <-> A. z e. ran S z <_ ( vol* ` U. ran F ) ) ) |
151 |
148 150
|
mpbird |
|- ( ph -> sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) ) |
152 |
20 39 63 151
|
xrletrid |
|- ( ph -> ( vol* ` U. ran F ) = sup ( ran S , RR* , < ) ) |
153 |
9 152
|
eqtrd |
|- ( ph -> ( vol ` U. ran F ) = sup ( ran S , RR* , < ) ) |