| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliunlem.3 |  |-  ( ph -> F : NN --> dom vol ) | 
						
							| 2 |  | voliunlem.5 |  |-  ( ph -> Disj_ i e. NN ( F ` i ) ) | 
						
							| 3 |  | voliunlem.6 |  |-  H = ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) | 
						
							| 4 |  | voliunlem3.1 |  |-  S = seq 1 ( + , G ) | 
						
							| 5 |  | voliunlem3.2 |  |-  G = ( n e. NN |-> ( vol ` ( F ` n ) ) ) | 
						
							| 6 |  | voliunlem3.4 |  |-  ( ph -> A. i e. NN ( vol ` ( F ` i ) ) e. RR ) | 
						
							| 7 | 1 2 3 | voliunlem2 |  |-  ( ph -> U. ran F e. dom vol ) | 
						
							| 8 |  | mblvol |  |-  ( U. ran F e. dom vol -> ( vol ` U. ran F ) = ( vol* ` U. ran F ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> ( vol ` U. ran F ) = ( vol* ` U. ran F ) ) | 
						
							| 10 | 1 | frnd |  |-  ( ph -> ran F C_ dom vol ) | 
						
							| 11 |  | mblss |  |-  ( x e. dom vol -> x C_ RR ) | 
						
							| 12 |  | reex |  |-  RR e. _V | 
						
							| 13 | 12 | elpw2 |  |-  ( x e. ~P RR <-> x C_ RR ) | 
						
							| 14 | 11 13 | sylibr |  |-  ( x e. dom vol -> x e. ~P RR ) | 
						
							| 15 | 14 | ssriv |  |-  dom vol C_ ~P RR | 
						
							| 16 | 10 15 | sstrdi |  |-  ( ph -> ran F C_ ~P RR ) | 
						
							| 17 |  | sspwuni |  |-  ( ran F C_ ~P RR <-> U. ran F C_ RR ) | 
						
							| 18 | 16 17 | sylib |  |-  ( ph -> U. ran F C_ RR ) | 
						
							| 19 |  | ovolcl |  |-  ( U. ran F C_ RR -> ( vol* ` U. ran F ) e. RR* ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> ( vol* ` U. ran F ) e. RR* ) | 
						
							| 21 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 22 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 23 |  | 2fveq3 |  |-  ( n = k -> ( vol ` ( F ` n ) ) = ( vol ` ( F ` k ) ) ) | 
						
							| 24 |  | fvex |  |-  ( vol ` ( F ` k ) ) e. _V | 
						
							| 25 | 23 5 24 | fvmpt |  |-  ( k e. NN -> ( G ` k ) = ( vol ` ( F ` k ) ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( G ` k ) = ( vol ` ( F ` k ) ) ) | 
						
							| 27 |  | 2fveq3 |  |-  ( i = k -> ( vol ` ( F ` i ) ) = ( vol ` ( F ` k ) ) ) | 
						
							| 28 | 27 | eleq1d |  |-  ( i = k -> ( ( vol ` ( F ` i ) ) e. RR <-> ( vol ` ( F ` k ) ) e. RR ) ) | 
						
							| 29 | 28 | rspccva |  |-  ( ( A. i e. NN ( vol ` ( F ` i ) ) e. RR /\ k e. NN ) -> ( vol ` ( F ` k ) ) e. RR ) | 
						
							| 30 | 6 29 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( vol ` ( F ` k ) ) e. RR ) | 
						
							| 31 | 26 30 | eqeltrd |  |-  ( ( ph /\ k e. NN ) -> ( G ` k ) e. RR ) | 
						
							| 32 | 21 22 31 | serfre |  |-  ( ph -> seq 1 ( + , G ) : NN --> RR ) | 
						
							| 33 | 4 | feq1i |  |-  ( S : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) | 
						
							| 34 | 32 33 | sylibr |  |-  ( ph -> S : NN --> RR ) | 
						
							| 35 | 34 | frnd |  |-  ( ph -> ran S C_ RR ) | 
						
							| 36 |  | ressxr |  |-  RR C_ RR* | 
						
							| 37 | 35 36 | sstrdi |  |-  ( ph -> ran S C_ RR* ) | 
						
							| 38 |  | supxrcl |  |-  ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> sup ( ran S , RR* , < ) e. RR* ) | 
						
							| 40 |  | eqid |  |-  seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) | 
						
							| 41 |  | eqid |  |-  ( n e. NN |-> ( vol* ` ( F ` n ) ) ) = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) | 
						
							| 42 | 1 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. dom vol ) | 
						
							| 43 |  | mblss |  |-  ( ( F ` n ) e. dom vol -> ( F ` n ) C_ RR ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) C_ RR ) | 
						
							| 45 |  | mblvol |  |-  ( ( F ` n ) e. dom vol -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) | 
						
							| 46 | 42 45 | syl |  |-  ( ( ph /\ n e. NN ) -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) | 
						
							| 47 |  | 2fveq3 |  |-  ( i = n -> ( vol ` ( F ` i ) ) = ( vol ` ( F ` n ) ) ) | 
						
							| 48 | 47 | eleq1d |  |-  ( i = n -> ( ( vol ` ( F ` i ) ) e. RR <-> ( vol ` ( F ` n ) ) e. RR ) ) | 
						
							| 49 | 48 | rspccva |  |-  ( ( A. i e. NN ( vol ` ( F ` i ) ) e. RR /\ n e. NN ) -> ( vol ` ( F ` n ) ) e. RR ) | 
						
							| 50 | 6 49 | sylan |  |-  ( ( ph /\ n e. NN ) -> ( vol ` ( F ` n ) ) e. RR ) | 
						
							| 51 | 46 50 | eqeltrrd |  |-  ( ( ph /\ n e. NN ) -> ( vol* ` ( F ` n ) ) e. RR ) | 
						
							| 52 | 40 41 44 51 | ovoliun |  |-  ( ph -> ( vol* ` U_ n e. NN ( F ` n ) ) <_ sup ( ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) , RR* , < ) ) | 
						
							| 53 | 1 | ffnd |  |-  ( ph -> F Fn NN ) | 
						
							| 54 |  | fniunfv |  |-  ( F Fn NN -> U_ n e. NN ( F ` n ) = U. ran F ) | 
						
							| 55 | 53 54 | syl |  |-  ( ph -> U_ n e. NN ( F ` n ) = U. ran F ) | 
						
							| 56 | 55 | fveq2d |  |-  ( ph -> ( vol* ` U_ n e. NN ( F ` n ) ) = ( vol* ` U. ran F ) ) | 
						
							| 57 | 46 | mpteq2dva |  |-  ( ph -> ( n e. NN |-> ( vol ` ( F ` n ) ) ) = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) | 
						
							| 58 | 5 57 | eqtrid |  |-  ( ph -> G = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) | 
						
							| 59 | 58 | seqeq3d |  |-  ( ph -> seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) ) | 
						
							| 60 | 4 59 | eqtr2id |  |-  ( ph -> seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = S ) | 
						
							| 61 | 60 | rneqd |  |-  ( ph -> ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = ran S ) | 
						
							| 62 | 61 | supeq1d |  |-  ( ph -> sup ( ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) , RR* , < ) = sup ( ran S , RR* , < ) ) | 
						
							| 63 | 52 56 62 | 3brtr3d |  |-  ( ph -> ( vol* ` U. ran F ) <_ sup ( ran S , RR* , < ) ) | 
						
							| 64 |  | ovolge0 |  |-  ( U. ran F C_ RR -> 0 <_ ( vol* ` U. ran F ) ) | 
						
							| 65 | 18 64 | syl |  |-  ( ph -> 0 <_ ( vol* ` U. ran F ) ) | 
						
							| 66 |  | mnflt0 |  |-  -oo < 0 | 
						
							| 67 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 68 |  | 0xr |  |-  0 e. RR* | 
						
							| 69 |  | xrltletr |  |-  ( ( -oo e. RR* /\ 0 e. RR* /\ ( vol* ` U. ran F ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( vol* ` U. ran F ) ) -> -oo < ( vol* ` U. ran F ) ) ) | 
						
							| 70 | 67 68 69 | mp3an12 |  |-  ( ( vol* ` U. ran F ) e. RR* -> ( ( -oo < 0 /\ 0 <_ ( vol* ` U. ran F ) ) -> -oo < ( vol* ` U. ran F ) ) ) | 
						
							| 71 | 66 70 | mpani |  |-  ( ( vol* ` U. ran F ) e. RR* -> ( 0 <_ ( vol* ` U. ran F ) -> -oo < ( vol* ` U. ran F ) ) ) | 
						
							| 72 | 20 65 71 | sylc |  |-  ( ph -> -oo < ( vol* ` U. ran F ) ) | 
						
							| 73 |  | xrrebnd |  |-  ( ( vol* ` U. ran F ) e. RR* -> ( ( vol* ` U. ran F ) e. RR <-> ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) ) ) | 
						
							| 74 | 20 73 | syl |  |-  ( ph -> ( ( vol* ` U. ran F ) e. RR <-> ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) ) ) | 
						
							| 75 | 12 | elpw2 |  |-  ( U. ran F e. ~P RR <-> U. ran F C_ RR ) | 
						
							| 76 | 18 75 | sylibr |  |-  ( ph -> U. ran F e. ~P RR ) | 
						
							| 77 |  | simpl |  |-  ( ( x = U. ran F /\ ph ) -> x = U. ran F ) | 
						
							| 78 | 77 | sseq1d |  |-  ( ( x = U. ran F /\ ph ) -> ( x C_ RR <-> U. ran F C_ RR ) ) | 
						
							| 79 | 77 | fveq2d |  |-  ( ( x = U. ran F /\ ph ) -> ( vol* ` x ) = ( vol* ` U. ran F ) ) | 
						
							| 80 | 79 | eleq1d |  |-  ( ( x = U. ran F /\ ph ) -> ( ( vol* ` x ) e. RR <-> ( vol* ` U. ran F ) e. RR ) ) | 
						
							| 81 |  | simpll |  |-  ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> x = U. ran F ) | 
						
							| 82 | 81 | ineq1d |  |-  ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) = ( U. ran F i^i ( F ` n ) ) ) | 
						
							| 83 |  | fnfvelrn |  |-  ( ( F Fn NN /\ n e. NN ) -> ( F ` n ) e. ran F ) | 
						
							| 84 | 53 83 | sylan |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. ran F ) | 
						
							| 85 |  | elssuni |  |-  ( ( F ` n ) e. ran F -> ( F ` n ) C_ U. ran F ) | 
						
							| 86 | 84 85 | syl |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) | 
						
							| 87 | 86 | adantll |  |-  ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) | 
						
							| 88 |  | sseqin2 |  |-  ( ( F ` n ) C_ U. ran F <-> ( U. ran F i^i ( F ` n ) ) = ( F ` n ) ) | 
						
							| 89 | 87 88 | sylib |  |-  ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( U. ran F i^i ( F ` n ) ) = ( F ` n ) ) | 
						
							| 90 | 82 89 | eqtrd |  |-  ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) = ( F ` n ) ) | 
						
							| 91 | 90 | fveq2d |  |-  ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol* ` ( F ` n ) ) ) | 
						
							| 92 | 46 | adantll |  |-  ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) | 
						
							| 93 | 91 92 | eqtr4d |  |-  ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol ` ( F ` n ) ) ) | 
						
							| 94 | 93 | mpteq2dva |  |-  ( ( x = U. ran F /\ ph ) -> ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( F ` n ) ) ) ) | 
						
							| 95 | 94 | adantrr |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( F ` n ) ) ) ) | 
						
							| 96 | 95 3 5 | 3eqtr4g |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> H = G ) | 
						
							| 97 | 96 | seqeq3d |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> seq 1 ( + , H ) = seq 1 ( + , G ) ) | 
						
							| 98 | 97 4 | eqtr4di |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> seq 1 ( + , H ) = S ) | 
						
							| 99 | 98 | fveq1d |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( seq 1 ( + , H ) ` k ) = ( S ` k ) ) | 
						
							| 100 |  | difeq1 |  |-  ( x = U. ran F -> ( x \ U. ran F ) = ( U. ran F \ U. ran F ) ) | 
						
							| 101 |  | difid |  |-  ( U. ran F \ U. ran F ) = (/) | 
						
							| 102 | 100 101 | eqtrdi |  |-  ( x = U. ran F -> ( x \ U. ran F ) = (/) ) | 
						
							| 103 | 102 | fveq2d |  |-  ( x = U. ran F -> ( vol* ` ( x \ U. ran F ) ) = ( vol* ` (/) ) ) | 
						
							| 104 |  | ovol0 |  |-  ( vol* ` (/) ) = 0 | 
						
							| 105 | 103 104 | eqtrdi |  |-  ( x = U. ran F -> ( vol* ` ( x \ U. ran F ) ) = 0 ) | 
						
							| 106 | 105 | adantr |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( vol* ` ( x \ U. ran F ) ) = 0 ) | 
						
							| 107 | 99 106 | oveq12d |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) = ( ( S ` k ) + 0 ) ) | 
						
							| 108 | 34 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( S ` k ) e. RR ) | 
						
							| 109 | 108 | adantl |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( S ` k ) e. RR ) | 
						
							| 110 | 109 | recnd |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( S ` k ) e. CC ) | 
						
							| 111 | 110 | addridd |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( S ` k ) + 0 ) = ( S ` k ) ) | 
						
							| 112 | 107 111 | eqtrd |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) = ( S ` k ) ) | 
						
							| 113 |  | fveq2 |  |-  ( x = U. ran F -> ( vol* ` x ) = ( vol* ` U. ran F ) ) | 
						
							| 114 | 113 | adantr |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( vol* ` x ) = ( vol* ` U. ran F ) ) | 
						
							| 115 | 112 114 | breq12d |  |-  ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) | 
						
							| 116 | 115 | expr |  |-  ( ( x = U. ran F /\ ph ) -> ( k e. NN -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) | 
						
							| 117 | 116 | pm5.74d |  |-  ( ( x = U. ran F /\ ph ) -> ( ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) <-> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) | 
						
							| 118 | 80 117 | imbi12d |  |-  ( ( x = U. ran F /\ ph ) -> ( ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) <-> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) | 
						
							| 119 | 78 118 | imbi12d |  |-  ( ( x = U. ran F /\ ph ) -> ( ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) <-> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) | 
						
							| 120 | 119 | pm5.74da |  |-  ( x = U. ran F -> ( ( ph -> ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) ) <-> ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) ) | 
						
							| 121 | 1 | 3ad2ant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> F : NN --> dom vol ) | 
						
							| 122 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> Disj_ i e. NN ( F ` i ) ) | 
						
							| 123 |  | simp2 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) | 
						
							| 124 |  | simp3 |  |-  ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. RR ) | 
						
							| 125 | 121 122 3 123 124 | voliunlem1 |  |-  ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) | 
						
							| 126 | 125 | 3exp1 |  |-  ( ph -> ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) ) | 
						
							| 127 | 120 126 | vtoclg |  |-  ( U. ran F e. ~P RR -> ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) | 
						
							| 128 | 76 127 | mpcom |  |-  ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) | 
						
							| 129 | 18 128 | mpd |  |-  ( ph -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) | 
						
							| 130 | 74 129 | sylbird |  |-  ( ph -> ( ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) | 
						
							| 131 | 72 130 | mpand |  |-  ( ph -> ( ( vol* ` U. ran F ) < +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) | 
						
							| 132 |  | nltpnft |  |-  ( ( vol* ` U. ran F ) e. RR* -> ( ( vol* ` U. ran F ) = +oo <-> -. ( vol* ` U. ran F ) < +oo ) ) | 
						
							| 133 | 20 132 | syl |  |-  ( ph -> ( ( vol* ` U. ran F ) = +oo <-> -. ( vol* ` U. ran F ) < +oo ) ) | 
						
							| 134 |  | rexr |  |-  ( ( S ` k ) e. RR -> ( S ` k ) e. RR* ) | 
						
							| 135 |  | pnfge |  |-  ( ( S ` k ) e. RR* -> ( S ` k ) <_ +oo ) | 
						
							| 136 | 108 134 135 | 3syl |  |-  ( ( ph /\ k e. NN ) -> ( S ` k ) <_ +oo ) | 
						
							| 137 | 136 | ex |  |-  ( ph -> ( k e. NN -> ( S ` k ) <_ +oo ) ) | 
						
							| 138 |  | breq2 |  |-  ( ( vol* ` U. ran F ) = +oo -> ( ( S ` k ) <_ ( vol* ` U. ran F ) <-> ( S ` k ) <_ +oo ) ) | 
						
							| 139 | 138 | imbi2d |  |-  ( ( vol* ` U. ran F ) = +oo -> ( ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) <-> ( k e. NN -> ( S ` k ) <_ +oo ) ) ) | 
						
							| 140 | 137 139 | syl5ibrcom |  |-  ( ph -> ( ( vol* ` U. ran F ) = +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) | 
						
							| 141 | 133 140 | sylbird |  |-  ( ph -> ( -. ( vol* ` U. ran F ) < +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) | 
						
							| 142 | 131 141 | pm2.61d |  |-  ( ph -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) | 
						
							| 143 | 142 | ralrimiv |  |-  ( ph -> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) | 
						
							| 144 | 34 | ffnd |  |-  ( ph -> S Fn NN ) | 
						
							| 145 |  | breq1 |  |-  ( z = ( S ` k ) -> ( z <_ ( vol* ` U. ran F ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) | 
						
							| 146 | 145 | ralrn |  |-  ( S Fn NN -> ( A. z e. ran S z <_ ( vol* ` U. ran F ) <-> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) ) | 
						
							| 147 | 144 146 | syl |  |-  ( ph -> ( A. z e. ran S z <_ ( vol* ` U. ran F ) <-> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) ) | 
						
							| 148 | 143 147 | mpbird |  |-  ( ph -> A. z e. ran S z <_ ( vol* ` U. ran F ) ) | 
						
							| 149 |  | supxrleub |  |-  ( ( ran S C_ RR* /\ ( vol* ` U. ran F ) e. RR* ) -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) <-> A. z e. ran S z <_ ( vol* ` U. ran F ) ) ) | 
						
							| 150 | 37 20 149 | syl2anc |  |-  ( ph -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) <-> A. z e. ran S z <_ ( vol* ` U. ran F ) ) ) | 
						
							| 151 | 148 150 | mpbird |  |-  ( ph -> sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) ) | 
						
							| 152 | 20 39 63 151 | xrletrid |  |-  ( ph -> ( vol* ` U. ran F ) = sup ( ran S , RR* , < ) ) | 
						
							| 153 | 9 152 | eqtrd |  |-  ( ph -> ( vol ` U. ran F ) = sup ( ran S , RR* , < ) ) |