Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> A e. dom vol ) |
2 |
|
mnfxr |
|- -oo e. RR* |
3 |
2
|
a1i |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> -oo e. RR* ) |
4 |
|
iccssxr |
|- ( 0 [,] ( vol ` A ) ) C_ RR* |
5 |
|
simpr |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B e. ( 0 [,] ( vol ` A ) ) ) |
6 |
4 5
|
sselid |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B e. RR* ) |
7 |
6
|
adantr |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B e. RR* ) |
8 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
9 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
10 |
9
|
ffvelrni |
|- ( A e. dom vol -> ( vol ` A ) e. ( 0 [,] +oo ) ) |
11 |
8 10
|
sselid |
|- ( A e. dom vol -> ( vol ` A ) e. RR* ) |
12 |
11
|
adantr |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( vol ` A ) e. RR* ) |
13 |
12
|
adantr |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> ( vol ` A ) e. RR* ) |
14 |
|
0xr |
|- 0 e. RR* |
15 |
|
elicc1 |
|- ( ( 0 e. RR* /\ ( vol ` A ) e. RR* ) -> ( B e. ( 0 [,] ( vol ` A ) ) <-> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) ) |
16 |
14 12 15
|
sylancr |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B e. ( 0 [,] ( vol ` A ) ) <-> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) ) |
17 |
5 16
|
mpbid |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) |
18 |
17
|
simp2d |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> 0 <_ B ) |
19 |
18
|
adantr |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> 0 <_ B ) |
20 |
|
mnflt0 |
|- -oo < 0 |
21 |
|
xrltletr |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ B e. RR* ) -> ( ( -oo < 0 /\ 0 <_ B ) -> -oo < B ) ) |
22 |
20 21
|
mpani |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ B e. RR* ) -> ( 0 <_ B -> -oo < B ) ) |
23 |
2 14 22
|
mp3an12 |
|- ( B e. RR* -> ( 0 <_ B -> -oo < B ) ) |
24 |
7 19 23
|
sylc |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> -oo < B ) |
25 |
|
simpr |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B < ( vol ` A ) ) |
26 |
|
xrre2 |
|- ( ( ( -oo e. RR* /\ B e. RR* /\ ( vol ` A ) e. RR* ) /\ ( -oo < B /\ B < ( vol ` A ) ) ) -> B e. RR ) |
27 |
3 7 13 24 25 26
|
syl32anc |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B e. RR ) |
28 |
|
volsup2 |
|- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
29 |
1 27 25 28
|
syl3anc |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
30 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
31 |
30
|
ad2antrl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> n e. RR ) |
32 |
31
|
renegcld |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n e. RR ) |
33 |
27
|
adantr |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B e. RR ) |
34 |
|
0red |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 e. RR ) |
35 |
|
nngt0 |
|- ( n e. NN -> 0 < n ) |
36 |
35
|
ad2antrl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 < n ) |
37 |
31
|
lt0neg2d |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( 0 < n <-> -u n < 0 ) ) |
38 |
36 37
|
mpbid |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n < 0 ) |
39 |
32 34 31 38 36
|
lttrd |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n < n ) |
40 |
|
iccssre |
|- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) C_ RR ) |
41 |
32 31 40
|
syl2anc |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] n ) C_ RR ) |
42 |
|
ax-resscn |
|- RR C_ CC |
43 |
|
ssid |
|- CC C_ CC |
44 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> RR ) C_ ( RR -cn-> CC ) ) |
45 |
42 43 44
|
mp2an |
|- ( RR -cn-> RR ) C_ ( RR -cn-> CC ) |
46 |
1
|
adantr |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> A e. dom vol ) |
47 |
|
eqid |
|- ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) = ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) |
48 |
47
|
volcn |
|- ( ( A e. dom vol /\ -u n e. RR ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) ) |
49 |
46 32 48
|
syl2anc |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) ) |
50 |
45 49
|
sselid |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> CC ) ) |
51 |
41
|
sselda |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. ( -u n [,] n ) ) -> u e. RR ) |
52 |
|
cncff |
|- ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) : RR --> RR ) |
53 |
49 52
|
syl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) : RR --> RR ) |
54 |
53
|
ffvelrnda |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. RR ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` u ) e. RR ) |
55 |
51 54
|
syldan |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. ( -u n [,] n ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` u ) e. RR ) |
56 |
|
oveq2 |
|- ( y = -u n -> ( -u n [,] y ) = ( -u n [,] -u n ) ) |
57 |
56
|
ineq2d |
|- ( y = -u n -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] -u n ) ) ) |
58 |
57
|
fveq2d |
|- ( y = -u n -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) |
59 |
|
fvex |
|- ( vol ` ( A i^i ( -u n [,] -u n ) ) ) e. _V |
60 |
58 47 59
|
fvmpt |
|- ( -u n e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) |
61 |
32 60
|
syl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) |
62 |
|
inss2 |
|- ( A i^i ( -u n [,] -u n ) ) C_ ( -u n [,] -u n ) |
63 |
32
|
rexrd |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n e. RR* ) |
64 |
|
iccid |
|- ( -u n e. RR* -> ( -u n [,] -u n ) = { -u n } ) |
65 |
63 64
|
syl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] -u n ) = { -u n } ) |
66 |
62 65
|
sseqtrid |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) C_ { -u n } ) |
67 |
32
|
snssd |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> { -u n } C_ RR ) |
68 |
66 67
|
sstrd |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) C_ RR ) |
69 |
|
ovolsn |
|- ( -u n e. RR -> ( vol* ` { -u n } ) = 0 ) |
70 |
32 69
|
syl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol* ` { -u n } ) = 0 ) |
71 |
|
ovolssnul |
|- ( ( ( A i^i ( -u n [,] -u n ) ) C_ { -u n } /\ { -u n } C_ RR /\ ( vol* ` { -u n } ) = 0 ) -> ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) |
72 |
66 67 70 71
|
syl3anc |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) |
73 |
|
nulmbl |
|- ( ( ( A i^i ( -u n [,] -u n ) ) C_ RR /\ ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) -> ( A i^i ( -u n [,] -u n ) ) e. dom vol ) |
74 |
68 72 73
|
syl2anc |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) e. dom vol ) |
75 |
|
mblvol |
|- ( ( A i^i ( -u n [,] -u n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] -u n ) ) ) = ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) ) |
76 |
74 75
|
syl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol ` ( A i^i ( -u n [,] -u n ) ) ) = ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) ) |
77 |
61 76 72
|
3eqtrd |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = 0 ) |
78 |
19
|
adantr |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 <_ B ) |
79 |
77 78
|
eqbrtrd |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) <_ B ) |
80 |
7
|
adantr |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B e. RR* ) |
81 |
|
iccmbl |
|- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) e. dom vol ) |
82 |
32 31 81
|
syl2anc |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] n ) e. dom vol ) |
83 |
|
inmbl |
|- ( ( A e. dom vol /\ ( -u n [,] n ) e. dom vol ) -> ( A i^i ( -u n [,] n ) ) e. dom vol ) |
84 |
46 82 83
|
syl2anc |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] n ) ) e. dom vol ) |
85 |
9
|
ffvelrni |
|- ( ( A i^i ( -u n [,] n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. ( 0 [,] +oo ) ) |
86 |
8 85
|
sselid |
|- ( ( A i^i ( -u n [,] n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) |
87 |
84 86
|
syl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) |
88 |
|
simprr |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
89 |
80 87 88
|
xrltled |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B <_ ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
90 |
|
oveq2 |
|- ( y = n -> ( -u n [,] y ) = ( -u n [,] n ) ) |
91 |
90
|
ineq2d |
|- ( y = n -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] n ) ) ) |
92 |
91
|
fveq2d |
|- ( y = n -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
93 |
|
fvex |
|- ( vol ` ( A i^i ( -u n [,] n ) ) ) e. _V |
94 |
92 47 93
|
fvmpt |
|- ( n e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
95 |
31 94
|
syl |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
96 |
89 95
|
breqtrrd |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B <_ ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) ) |
97 |
79 96
|
jca |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) <_ B /\ B <_ ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) ) ) |
98 |
32 31 33 39 41 50 55 97
|
ivthle |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> E. z e. ( -u n [,] n ) ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B ) |
99 |
41
|
sselda |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> z e. RR ) |
100 |
|
oveq2 |
|- ( y = z -> ( -u n [,] y ) = ( -u n [,] z ) ) |
101 |
100
|
ineq2d |
|- ( y = z -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] z ) ) ) |
102 |
101
|
fveq2d |
|- ( y = z -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) |
103 |
|
fvex |
|- ( vol ` ( A i^i ( -u n [,] z ) ) ) e. _V |
104 |
102 47 103
|
fvmpt |
|- ( z e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) |
105 |
99 104
|
syl |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) |
106 |
105
|
eqeq1d |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B <-> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) |
107 |
46
|
adantr |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> A e. dom vol ) |
108 |
32
|
adantr |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> -u n e. RR ) |
109 |
99
|
adantrr |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> z e. RR ) |
110 |
|
iccmbl |
|- ( ( -u n e. RR /\ z e. RR ) -> ( -u n [,] z ) e. dom vol ) |
111 |
108 109 110
|
syl2anc |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( -u n [,] z ) e. dom vol ) |
112 |
|
inmbl |
|- ( ( A e. dom vol /\ ( -u n [,] z ) e. dom vol ) -> ( A i^i ( -u n [,] z ) ) e. dom vol ) |
113 |
107 111 112
|
syl2anc |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( A i^i ( -u n [,] z ) ) e. dom vol ) |
114 |
|
inss1 |
|- ( A i^i ( -u n [,] z ) ) C_ A |
115 |
114
|
a1i |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( A i^i ( -u n [,] z ) ) C_ A ) |
116 |
|
simprr |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) |
117 |
|
sseq1 |
|- ( x = ( A i^i ( -u n [,] z ) ) -> ( x C_ A <-> ( A i^i ( -u n [,] z ) ) C_ A ) ) |
118 |
|
fveqeq2 |
|- ( x = ( A i^i ( -u n [,] z ) ) -> ( ( vol ` x ) = B <-> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) |
119 |
117 118
|
anbi12d |
|- ( x = ( A i^i ( -u n [,] z ) ) -> ( ( x C_ A /\ ( vol ` x ) = B ) <-> ( ( A i^i ( -u n [,] z ) ) C_ A /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) ) |
120 |
119
|
rspcev |
|- ( ( ( A i^i ( -u n [,] z ) ) e. dom vol /\ ( ( A i^i ( -u n [,] z ) ) C_ A /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
121 |
113 115 116 120
|
syl12anc |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
122 |
121
|
expr |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( vol ` ( A i^i ( -u n [,] z ) ) ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) |
123 |
106 122
|
sylbid |
|- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) |
124 |
123
|
rexlimdva |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( E. z e. ( -u n [,] n ) ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) |
125 |
98 124
|
mpd |
|- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
126 |
29 125
|
rexlimddv |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
127 |
|
simpll |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> A e. dom vol ) |
128 |
|
ssid |
|- A C_ A |
129 |
128
|
a1i |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> A C_ A ) |
130 |
|
simpr |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> B = ( vol ` A ) ) |
131 |
130
|
eqcomd |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> ( vol ` A ) = B ) |
132 |
|
sseq1 |
|- ( x = A -> ( x C_ A <-> A C_ A ) ) |
133 |
|
fveqeq2 |
|- ( x = A -> ( ( vol ` x ) = B <-> ( vol ` A ) = B ) ) |
134 |
132 133
|
anbi12d |
|- ( x = A -> ( ( x C_ A /\ ( vol ` x ) = B ) <-> ( A C_ A /\ ( vol ` A ) = B ) ) ) |
135 |
134
|
rspcev |
|- ( ( A e. dom vol /\ ( A C_ A /\ ( vol ` A ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
136 |
127 129 131 135
|
syl12anc |
|- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
137 |
17
|
simp3d |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B <_ ( vol ` A ) ) |
138 |
|
xrleloe |
|- ( ( B e. RR* /\ ( vol ` A ) e. RR* ) -> ( B <_ ( vol ` A ) <-> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) ) |
139 |
6 12 138
|
syl2anc |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B <_ ( vol ` A ) <-> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) ) |
140 |
137 139
|
mpbid |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) |
141 |
126 136 140
|
mpjaodan |
|- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |