| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> A e. dom vol ) | 
						
							| 2 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 3 | 2 | a1i |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> -oo e. RR* ) | 
						
							| 4 |  | iccssxr |  |-  ( 0 [,] ( vol ` A ) ) C_ RR* | 
						
							| 5 |  | simpr |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B e. ( 0 [,] ( vol ` A ) ) ) | 
						
							| 6 | 4 5 | sselid |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B e. RR* ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B e. RR* ) | 
						
							| 8 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 9 |  | volf |  |-  vol : dom vol --> ( 0 [,] +oo ) | 
						
							| 10 | 9 | ffvelcdmi |  |-  ( A e. dom vol -> ( vol ` A ) e. ( 0 [,] +oo ) ) | 
						
							| 11 | 8 10 | sselid |  |-  ( A e. dom vol -> ( vol ` A ) e. RR* ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( vol ` A ) e. RR* ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> ( vol ` A ) e. RR* ) | 
						
							| 14 |  | 0xr |  |-  0 e. RR* | 
						
							| 15 |  | elicc1 |  |-  ( ( 0 e. RR* /\ ( vol ` A ) e. RR* ) -> ( B e. ( 0 [,] ( vol ` A ) ) <-> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) ) | 
						
							| 16 | 14 12 15 | sylancr |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B e. ( 0 [,] ( vol ` A ) ) <-> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) ) | 
						
							| 17 | 5 16 | mpbid |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) | 
						
							| 18 | 17 | simp2d |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> 0 <_ B ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> 0 <_ B ) | 
						
							| 20 |  | mnflt0 |  |-  -oo < 0 | 
						
							| 21 |  | xrltletr |  |-  ( ( -oo e. RR* /\ 0 e. RR* /\ B e. RR* ) -> ( ( -oo < 0 /\ 0 <_ B ) -> -oo < B ) ) | 
						
							| 22 | 20 21 | mpani |  |-  ( ( -oo e. RR* /\ 0 e. RR* /\ B e. RR* ) -> ( 0 <_ B -> -oo < B ) ) | 
						
							| 23 | 2 14 22 | mp3an12 |  |-  ( B e. RR* -> ( 0 <_ B -> -oo < B ) ) | 
						
							| 24 | 7 19 23 | sylc |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> -oo < B ) | 
						
							| 25 |  | simpr |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B < ( vol ` A ) ) | 
						
							| 26 |  | xrre2 |  |-  ( ( ( -oo e. RR* /\ B e. RR* /\ ( vol ` A ) e. RR* ) /\ ( -oo < B /\ B < ( vol ` A ) ) ) -> B e. RR ) | 
						
							| 27 | 3 7 13 24 25 26 | syl32anc |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B e. RR ) | 
						
							| 28 |  | volsup2 |  |-  ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) | 
						
							| 29 | 1 27 25 28 | syl3anc |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) | 
						
							| 30 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 31 | 30 | ad2antrl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> n e. RR ) | 
						
							| 32 | 31 | renegcld |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n e. RR ) | 
						
							| 33 | 27 | adantr |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B e. RR ) | 
						
							| 34 |  | 0red |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 e. RR ) | 
						
							| 35 |  | nngt0 |  |-  ( n e. NN -> 0 < n ) | 
						
							| 36 | 35 | ad2antrl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 < n ) | 
						
							| 37 | 31 | lt0neg2d |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( 0 < n <-> -u n < 0 ) ) | 
						
							| 38 | 36 37 | mpbid |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n < 0 ) | 
						
							| 39 | 32 34 31 38 36 | lttrd |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n < n ) | 
						
							| 40 |  | iccssre |  |-  ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) C_ RR ) | 
						
							| 41 | 32 31 40 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] n ) C_ RR ) | 
						
							| 42 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 43 |  | ssid |  |-  CC C_ CC | 
						
							| 44 |  | cncfss |  |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> RR ) C_ ( RR -cn-> CC ) ) | 
						
							| 45 | 42 43 44 | mp2an |  |-  ( RR -cn-> RR ) C_ ( RR -cn-> CC ) | 
						
							| 46 | 1 | adantr |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> A e. dom vol ) | 
						
							| 47 |  | eqid |  |-  ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) = ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) | 
						
							| 48 | 47 | volcn |  |-  ( ( A e. dom vol /\ -u n e. RR ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) ) | 
						
							| 49 | 46 32 48 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) ) | 
						
							| 50 | 45 49 | sselid |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> CC ) ) | 
						
							| 51 | 41 | sselda |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. ( -u n [,] n ) ) -> u e. RR ) | 
						
							| 52 |  | cncff |  |-  ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) : RR --> RR ) | 
						
							| 53 | 49 52 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) : RR --> RR ) | 
						
							| 54 | 53 | ffvelcdmda |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. RR ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` u ) e. RR ) | 
						
							| 55 | 51 54 | syldan |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. ( -u n [,] n ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` u ) e. RR ) | 
						
							| 56 |  | oveq2 |  |-  ( y = -u n -> ( -u n [,] y ) = ( -u n [,] -u n ) ) | 
						
							| 57 | 56 | ineq2d |  |-  ( y = -u n -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] -u n ) ) ) | 
						
							| 58 | 57 | fveq2d |  |-  ( y = -u n -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) | 
						
							| 59 |  | fvex |  |-  ( vol ` ( A i^i ( -u n [,] -u n ) ) ) e. _V | 
						
							| 60 | 58 47 59 | fvmpt |  |-  ( -u n e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) | 
						
							| 61 | 32 60 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) | 
						
							| 62 |  | inss2 |  |-  ( A i^i ( -u n [,] -u n ) ) C_ ( -u n [,] -u n ) | 
						
							| 63 | 32 | rexrd |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n e. RR* ) | 
						
							| 64 |  | iccid |  |-  ( -u n e. RR* -> ( -u n [,] -u n ) = { -u n } ) | 
						
							| 65 | 63 64 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] -u n ) = { -u n } ) | 
						
							| 66 | 62 65 | sseqtrid |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) C_ { -u n } ) | 
						
							| 67 | 32 | snssd |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> { -u n } C_ RR ) | 
						
							| 68 | 66 67 | sstrd |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) C_ RR ) | 
						
							| 69 |  | ovolsn |  |-  ( -u n e. RR -> ( vol* ` { -u n } ) = 0 ) | 
						
							| 70 | 32 69 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol* ` { -u n } ) = 0 ) | 
						
							| 71 |  | ovolssnul |  |-  ( ( ( A i^i ( -u n [,] -u n ) ) C_ { -u n } /\ { -u n } C_ RR /\ ( vol* ` { -u n } ) = 0 ) -> ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) | 
						
							| 72 | 66 67 70 71 | syl3anc |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) | 
						
							| 73 |  | nulmbl |  |-  ( ( ( A i^i ( -u n [,] -u n ) ) C_ RR /\ ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) -> ( A i^i ( -u n [,] -u n ) ) e. dom vol ) | 
						
							| 74 | 68 72 73 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) e. dom vol ) | 
						
							| 75 |  | mblvol |  |-  ( ( A i^i ( -u n [,] -u n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] -u n ) ) ) = ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol ` ( A i^i ( -u n [,] -u n ) ) ) = ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) ) | 
						
							| 77 | 61 76 72 | 3eqtrd |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = 0 ) | 
						
							| 78 | 19 | adantr |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 <_ B ) | 
						
							| 79 | 77 78 | eqbrtrd |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) <_ B ) | 
						
							| 80 | 7 | adantr |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B e. RR* ) | 
						
							| 81 |  | iccmbl |  |-  ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) e. dom vol ) | 
						
							| 82 | 32 31 81 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] n ) e. dom vol ) | 
						
							| 83 |  | inmbl |  |-  ( ( A e. dom vol /\ ( -u n [,] n ) e. dom vol ) -> ( A i^i ( -u n [,] n ) ) e. dom vol ) | 
						
							| 84 | 46 82 83 | syl2anc |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] n ) ) e. dom vol ) | 
						
							| 85 | 9 | ffvelcdmi |  |-  ( ( A i^i ( -u n [,] n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 86 | 8 85 | sselid |  |-  ( ( A i^i ( -u n [,] n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) | 
						
							| 87 | 84 86 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) | 
						
							| 88 |  | simprr |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) | 
						
							| 89 | 80 87 88 | xrltled |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B <_ ( vol ` ( A i^i ( -u n [,] n ) ) ) ) | 
						
							| 90 |  | oveq2 |  |-  ( y = n -> ( -u n [,] y ) = ( -u n [,] n ) ) | 
						
							| 91 | 90 | ineq2d |  |-  ( y = n -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] n ) ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( y = n -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) | 
						
							| 93 |  | fvex |  |-  ( vol ` ( A i^i ( -u n [,] n ) ) ) e. _V | 
						
							| 94 | 92 47 93 | fvmpt |  |-  ( n e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) | 
						
							| 95 | 31 94 | syl |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) | 
						
							| 96 | 89 95 | breqtrrd |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B <_ ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) ) | 
						
							| 97 | 79 96 | jca |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) <_ B /\ B <_ ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) ) ) | 
						
							| 98 | 32 31 33 39 41 50 55 97 | ivthle |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> E. z e. ( -u n [,] n ) ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B ) | 
						
							| 99 | 41 | sselda |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> z e. RR ) | 
						
							| 100 |  | oveq2 |  |-  ( y = z -> ( -u n [,] y ) = ( -u n [,] z ) ) | 
						
							| 101 | 100 | ineq2d |  |-  ( y = z -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] z ) ) ) | 
						
							| 102 | 101 | fveq2d |  |-  ( y = z -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) | 
						
							| 103 |  | fvex |  |-  ( vol ` ( A i^i ( -u n [,] z ) ) ) e. _V | 
						
							| 104 | 102 47 103 | fvmpt |  |-  ( z e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) | 
						
							| 105 | 99 104 | syl |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) | 
						
							| 106 | 105 | eqeq1d |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B <-> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) | 
						
							| 107 | 46 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> A e. dom vol ) | 
						
							| 108 | 32 | adantr |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> -u n e. RR ) | 
						
							| 109 | 99 | adantrr |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> z e. RR ) | 
						
							| 110 |  | iccmbl |  |-  ( ( -u n e. RR /\ z e. RR ) -> ( -u n [,] z ) e. dom vol ) | 
						
							| 111 | 108 109 110 | syl2anc |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( -u n [,] z ) e. dom vol ) | 
						
							| 112 |  | inmbl |  |-  ( ( A e. dom vol /\ ( -u n [,] z ) e. dom vol ) -> ( A i^i ( -u n [,] z ) ) e. dom vol ) | 
						
							| 113 | 107 111 112 | syl2anc |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( A i^i ( -u n [,] z ) ) e. dom vol ) | 
						
							| 114 |  | inss1 |  |-  ( A i^i ( -u n [,] z ) ) C_ A | 
						
							| 115 | 114 | a1i |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( A i^i ( -u n [,] z ) ) C_ A ) | 
						
							| 116 |  | simprr |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) | 
						
							| 117 |  | sseq1 |  |-  ( x = ( A i^i ( -u n [,] z ) ) -> ( x C_ A <-> ( A i^i ( -u n [,] z ) ) C_ A ) ) | 
						
							| 118 |  | fveqeq2 |  |-  ( x = ( A i^i ( -u n [,] z ) ) -> ( ( vol ` x ) = B <-> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) | 
						
							| 119 | 117 118 | anbi12d |  |-  ( x = ( A i^i ( -u n [,] z ) ) -> ( ( x C_ A /\ ( vol ` x ) = B ) <-> ( ( A i^i ( -u n [,] z ) ) C_ A /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) ) | 
						
							| 120 | 119 | rspcev |  |-  ( ( ( A i^i ( -u n [,] z ) ) e. dom vol /\ ( ( A i^i ( -u n [,] z ) ) C_ A /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) | 
						
							| 121 | 113 115 116 120 | syl12anc |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) | 
						
							| 122 | 121 | expr |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( vol ` ( A i^i ( -u n [,] z ) ) ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) | 
						
							| 123 | 106 122 | sylbid |  |-  ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) | 
						
							| 124 | 123 | rexlimdva |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( E. z e. ( -u n [,] n ) ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) | 
						
							| 125 | 98 124 | mpd |  |-  ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) | 
						
							| 126 | 29 125 | rexlimddv |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) | 
						
							| 127 |  | simpll |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> A e. dom vol ) | 
						
							| 128 |  | ssid |  |-  A C_ A | 
						
							| 129 | 128 | a1i |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> A C_ A ) | 
						
							| 130 |  | simpr |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> B = ( vol ` A ) ) | 
						
							| 131 | 130 | eqcomd |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> ( vol ` A ) = B ) | 
						
							| 132 |  | sseq1 |  |-  ( x = A -> ( x C_ A <-> A C_ A ) ) | 
						
							| 133 |  | fveqeq2 |  |-  ( x = A -> ( ( vol ` x ) = B <-> ( vol ` A ) = B ) ) | 
						
							| 134 | 132 133 | anbi12d |  |-  ( x = A -> ( ( x C_ A /\ ( vol ` x ) = B ) <-> ( A C_ A /\ ( vol ` A ) = B ) ) ) | 
						
							| 135 | 134 | rspcev |  |-  ( ( A e. dom vol /\ ( A C_ A /\ ( vol ` A ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) | 
						
							| 136 | 127 129 131 135 | syl12anc |  |-  ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) | 
						
							| 137 | 17 | simp3d |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B <_ ( vol ` A ) ) | 
						
							| 138 |  | xrleloe |  |-  ( ( B e. RR* /\ ( vol ` A ) e. RR* ) -> ( B <_ ( vol ` A ) <-> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) ) | 
						
							| 139 | 6 12 138 | syl2anc |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B <_ ( vol ` A ) <-> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) ) | 
						
							| 140 | 137 139 | mpbid |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) | 
						
							| 141 | 126 136 140 | mpjaodan |  |-  ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |