Description: A singleton has 0 Lebesgue measure. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | volsn | |- ( A e. RR -> ( vol ` { A } ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snmbl | |- ( A e. RR -> { A } e. dom vol ) |
|
2 | mblvol | |- ( { A } e. dom vol -> ( vol ` { A } ) = ( vol* ` { A } ) ) |
|
3 | 1 2 | syl | |- ( A e. RR -> ( vol ` { A } ) = ( vol* ` { A } ) ) |
4 | ovolsn | |- ( A e. RR -> ( vol* ` { A } ) = 0 ) |
|
5 | 3 4 | eqtrd | |- ( A e. RR -> ( vol ` { A } ) = 0 ) |