Metamath Proof Explorer


Theorem volsn

Description: A singleton has 0 Lebesgue measure. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion volsn
|- ( A e. RR -> ( vol ` { A } ) = 0 )

Proof

Step Hyp Ref Expression
1 snmbl
 |-  ( A e. RR -> { A } e. dom vol )
2 mblvol
 |-  ( { A } e. dom vol -> ( vol ` { A } ) = ( vol* ` { A } ) )
3 1 2 syl
 |-  ( A e. RR -> ( vol ` { A } ) = ( vol* ` { A } ) )
4 ovolsn
 |-  ( A e. RR -> ( vol* ` { A } ) = 0 )
5 3 4 eqtrd
 |-  ( A e. RR -> ( vol ` { A } ) = 0 )