Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> A C_ B ) |
2 |
|
mblss |
|- ( B e. dom vol -> B C_ RR ) |
3 |
2
|
3ad2ant2 |
|- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> B C_ RR ) |
4 |
|
ovolss |
|- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
5 |
1 3 4
|
syl2anc |
|- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
6 |
|
mblvol |
|- ( A e. dom vol -> ( vol ` A ) = ( vol* ` A ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol ` A ) = ( vol* ` A ) ) |
8 |
|
mblvol |
|- ( B e. dom vol -> ( vol ` B ) = ( vol* ` B ) ) |
9 |
8
|
3ad2ant2 |
|- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol ` B ) = ( vol* ` B ) ) |
10 |
5 7 9
|
3brtr4d |
|- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol ` A ) <_ ( vol ` B ) ) |