Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
2 |
1
|
sseq2d |
|- ( x = A -> ( ( F ` A ) C_ ( F ` x ) <-> ( F ` A ) C_ ( F ` A ) ) ) |
3 |
2
|
imbi2d |
|- ( x = A -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` x ) ) <-> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` A ) ) ) ) |
4 |
|
fveq2 |
|- ( x = k -> ( F ` x ) = ( F ` k ) ) |
5 |
4
|
sseq2d |
|- ( x = k -> ( ( F ` A ) C_ ( F ` x ) <-> ( F ` A ) C_ ( F ` k ) ) ) |
6 |
5
|
imbi2d |
|- ( x = k -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` x ) ) <-> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` k ) ) ) ) |
7 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
8 |
7
|
sseq2d |
|- ( x = ( k + 1 ) -> ( ( F ` A ) C_ ( F ` x ) <-> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) |
9 |
8
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` x ) ) <-> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) ) |
10 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
11 |
10
|
sseq2d |
|- ( x = B -> ( ( F ` A ) C_ ( F ` x ) <-> ( F ` A ) C_ ( F ` B ) ) ) |
12 |
11
|
imbi2d |
|- ( x = B -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` x ) ) <-> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` B ) ) ) ) |
13 |
|
ssid |
|- ( F ` A ) C_ ( F ` A ) |
14 |
13
|
2a1i |
|- ( A e. ZZ -> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` A ) ) ) |
15 |
|
eluznn |
|- ( ( A e. NN /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) |
16 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
17 |
|
fvoveq1 |
|- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
18 |
16 17
|
sseq12d |
|- ( n = k -> ( ( F ` n ) C_ ( F ` ( n + 1 ) ) <-> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) ) |
19 |
18
|
rspccva |
|- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ k e. NN ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) |
20 |
15 19
|
sylan2 |
|- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ ( A e. NN /\ k e. ( ZZ>= ` A ) ) ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) |
21 |
20
|
anassrs |
|- ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) |
22 |
|
sstr2 |
|- ( ( F ` A ) C_ ( F ` k ) -> ( ( F ` k ) C_ ( F ` ( k + 1 ) ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) |
23 |
21 22
|
syl5com |
|- ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( F ` A ) C_ ( F ` k ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) |
24 |
23
|
expcom |
|- ( k e. ( ZZ>= ` A ) -> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( ( F ` A ) C_ ( F ` k ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) ) |
25 |
24
|
a2d |
|- ( k e. ( ZZ>= ` A ) -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` k ) ) -> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) ) |
26 |
3 6 9 12 14 25
|
uzind4 |
|- ( B e. ( ZZ>= ` A ) -> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` B ) ) ) |
27 |
26
|
com12 |
|- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( B e. ( ZZ>= ` A ) -> ( F ` A ) C_ ( F ` B ) ) ) |
28 |
27
|
impr |
|- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ ( A e. NN /\ B e. ( ZZ>= ` A ) ) ) -> ( F ` A ) C_ ( F ` B ) ) |