Metamath Proof Explorer


Theorem vpwex

Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of TakeutiZaring p. 17. (Contributed by NM, 30-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Revised to prove pwexg from vpwex . (Revised by BJ, 10-Aug-2022)

Ref Expression
Assertion vpwex
|- ~P x e. _V

Proof

Step Hyp Ref Expression
1 df-pw
 |-  ~P x = { w | w C_ x }
2 axpow2
 |-  E. y A. z ( z C_ x -> z e. y )
3 2 bm1.3ii
 |-  E. y A. z ( z e. y <-> z C_ x )
4 sseq1
 |-  ( w = z -> ( w C_ x <-> z C_ x ) )
5 4 abeq2w
 |-  ( y = { w | w C_ x } <-> A. z ( z e. y <-> z C_ x ) )
6 5 exbii
 |-  ( E. y y = { w | w C_ x } <-> E. y A. z ( z e. y <-> z C_ x ) )
7 3 6 mpbir
 |-  E. y y = { w | w C_ x }
8 7 issetri
 |-  { w | w C_ x } e. _V
9 1 8 eqeltri
 |-  ~P x e. _V