Metamath Proof Explorer


Theorem vr1cl

Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypotheses vr1cl.x
|- X = ( var1 ` R )
vr1cl.p
|- P = ( Poly1 ` R )
vr1cl.b
|- B = ( Base ` P )
Assertion vr1cl
|- ( R e. Ring -> X e. B )

Proof

Step Hyp Ref Expression
1 vr1cl.x
 |-  X = ( var1 ` R )
2 vr1cl.p
 |-  P = ( Poly1 ` R )
3 vr1cl.b
 |-  B = ( Base ` P )
4 1 vr1val
 |-  X = ( ( 1o mVar R ) ` (/) )
5 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
6 eqid
 |-  ( 1o mVar R ) = ( 1o mVar R )
7 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
8 2 7 3 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
9 1onn
 |-  1o e. _om
10 9 a1i
 |-  ( R e. Ring -> 1o e. _om )
11 id
 |-  ( R e. Ring -> R e. Ring )
12 0lt1o
 |-  (/) e. 1o
13 12 a1i
 |-  ( R e. Ring -> (/) e. 1o )
14 5 6 8 10 11 13 mvrcl
 |-  ( R e. Ring -> ( ( 1o mVar R ) ` (/) ) e. B )
15 4 14 eqeltrid
 |-  ( R e. Ring -> X e. B )