Step |
Hyp |
Ref |
Expression |
1 |
|
vr1val.1 |
|- X = ( var1 ` R ) |
2 |
|
oveq2 |
|- ( r = R -> ( 1o mVar r ) = ( 1o mVar R ) ) |
3 |
2
|
fveq1d |
|- ( r = R -> ( ( 1o mVar r ) ` (/) ) = ( ( 1o mVar R ) ` (/) ) ) |
4 |
|
df-vr1 |
|- var1 = ( r e. _V |-> ( ( 1o mVar r ) ` (/) ) ) |
5 |
|
fvex |
|- ( ( 1o mVar R ) ` (/) ) e. _V |
6 |
3 4 5
|
fvmpt |
|- ( R e. _V -> ( var1 ` R ) = ( ( 1o mVar R ) ` (/) ) ) |
7 |
1 6
|
eqtrid |
|- ( R e. _V -> X = ( ( 1o mVar R ) ` (/) ) ) |
8 |
|
fvprc |
|- ( -. R e. _V -> ( var1 ` R ) = (/) ) |
9 |
|
0fv |
|- ( (/) ` (/) ) = (/) |
10 |
8 1 9
|
3eqtr4g |
|- ( -. R e. _V -> X = ( (/) ` (/) ) ) |
11 |
|
df-mvr |
|- mVar = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) |
12 |
11
|
reldmmpo |
|- Rel dom mVar |
13 |
12
|
ovprc2 |
|- ( -. R e. _V -> ( 1o mVar R ) = (/) ) |
14 |
13
|
fveq1d |
|- ( -. R e. _V -> ( ( 1o mVar R ) ` (/) ) = ( (/) ` (/) ) ) |
15 |
10 14
|
eqtr4d |
|- ( -. R e. _V -> X = ( ( 1o mVar R ) ` (/) ) ) |
16 |
7 15
|
pm2.61i |
|- X = ( ( 1o mVar R ) ` (/) ) |