Step |
Hyp |
Ref |
Expression |
1 |
|
vrgpfval.r |
|- .~ = ( ~FG ` I ) |
2 |
|
vrgpfval.u |
|- U = ( varFGrp ` I ) |
3 |
|
vrgpf.m |
|- G = ( freeGrp ` I ) |
4 |
|
vrgpf.x |
|- X = ( Base ` G ) |
5 |
1 2
|
vrgpfval |
|- ( I e. V -> U = ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ) |
6 |
|
0ex |
|- (/) e. _V |
7 |
6
|
prid1 |
|- (/) e. { (/) , 1o } |
8 |
|
df2o3 |
|- 2o = { (/) , 1o } |
9 |
7 8
|
eleqtrri |
|- (/) e. 2o |
10 |
|
opelxpi |
|- ( ( j e. I /\ (/) e. 2o ) -> <. j , (/) >. e. ( I X. 2o ) ) |
11 |
9 10
|
mpan2 |
|- ( j e. I -> <. j , (/) >. e. ( I X. 2o ) ) |
12 |
11
|
adantl |
|- ( ( I e. V /\ j e. I ) -> <. j , (/) >. e. ( I X. 2o ) ) |
13 |
12
|
s1cld |
|- ( ( I e. V /\ j e. I ) -> <" <. j , (/) >. "> e. Word ( I X. 2o ) ) |
14 |
|
2on |
|- 2o e. On |
15 |
|
xpexg |
|- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
16 |
14 15
|
mpan2 |
|- ( I e. V -> ( I X. 2o ) e. _V ) |
17 |
16
|
adantr |
|- ( ( I e. V /\ j e. I ) -> ( I X. 2o ) e. _V ) |
18 |
|
wrdexg |
|- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
19 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
20 |
17 18 19
|
3syl |
|- ( ( I e. V /\ j e. I ) -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
21 |
13 20
|
eleqtrrd |
|- ( ( I e. V /\ j e. I ) -> <" <. j , (/) >. "> e. ( _I ` Word ( I X. 2o ) ) ) |
22 |
|
eqid |
|- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
23 |
3 1 22 4
|
frgpeccl |
|- ( <" <. j , (/) >. "> e. ( _I ` Word ( I X. 2o ) ) -> [ <" <. j , (/) >. "> ] .~ e. X ) |
24 |
21 23
|
syl |
|- ( ( I e. V /\ j e. I ) -> [ <" <. j , (/) >. "> ] .~ e. X ) |
25 |
5 24
|
fmpt3d |
|- ( I e. V -> U : I --> X ) |