Step |
Hyp |
Ref |
Expression |
1 |
|
vrgpfval.r |
|- .~ = ( ~FG ` I ) |
2 |
|
vrgpfval.u |
|- U = ( varFGrp ` I ) |
3 |
|
vrgpf.m |
|- G = ( freeGrp ` I ) |
4 |
|
vrgpinv.n |
|- N = ( invg ` G ) |
5 |
1 2
|
vrgpval |
|- ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
6 |
5
|
fveq2d |
|- ( ( I e. V /\ A e. I ) -> ( N ` ( U ` A ) ) = ( N ` [ <" <. A , (/) >. "> ] .~ ) ) |
7 |
|
simpr |
|- ( ( I e. V /\ A e. I ) -> A e. I ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
8
|
prid1 |
|- (/) e. { (/) , 1o } |
10 |
|
df2o3 |
|- 2o = { (/) , 1o } |
11 |
9 10
|
eleqtrri |
|- (/) e. 2o |
12 |
|
opelxpi |
|- ( ( A e. I /\ (/) e. 2o ) -> <. A , (/) >. e. ( I X. 2o ) ) |
13 |
7 11 12
|
sylancl |
|- ( ( I e. V /\ A e. I ) -> <. A , (/) >. e. ( I X. 2o ) ) |
14 |
13
|
s1cld |
|- ( ( I e. V /\ A e. I ) -> <" <. A , (/) >. "> e. Word ( I X. 2o ) ) |
15 |
|
simpl |
|- ( ( I e. V /\ A e. I ) -> I e. V ) |
16 |
|
2on |
|- 2o e. On |
17 |
|
xpexg |
|- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
18 |
15 16 17
|
sylancl |
|- ( ( I e. V /\ A e. I ) -> ( I X. 2o ) e. _V ) |
19 |
|
wrdexg |
|- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
20 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
21 |
18 19 20
|
3syl |
|- ( ( I e. V /\ A e. I ) -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
22 |
14 21
|
eleqtrrd |
|- ( ( I e. V /\ A e. I ) -> <" <. A , (/) >. "> e. ( _I ` Word ( I X. 2o ) ) ) |
23 |
|
eqid |
|- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
24 |
|
eqid |
|- ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) = ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) |
25 |
23 3 1 4 24
|
frgpinv |
|- ( <" <. A , (/) >. "> e. ( _I ` Word ( I X. 2o ) ) -> ( N ` [ <" <. A , (/) >. "> ] .~ ) = [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ ) |
26 |
22 25
|
syl |
|- ( ( I e. V /\ A e. I ) -> ( N ` [ <" <. A , (/) >. "> ] .~ ) = [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ ) |
27 |
|
revs1 |
|- ( reverse ` <" <. A , (/) >. "> ) = <" <. A , (/) >. "> |
28 |
27
|
a1i |
|- ( ( I e. V /\ A e. I ) -> ( reverse ` <" <. A , (/) >. "> ) = <" <. A , (/) >. "> ) |
29 |
28
|
coeq2d |
|- ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) = ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) ) |
30 |
24
|
efgmf |
|- ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) : ( I X. 2o ) --> ( I X. 2o ) |
31 |
|
s1co |
|- ( ( <. A , (/) >. e. ( I X. 2o ) /\ ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) : ( I X. 2o ) --> ( I X. 2o ) ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) = <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> ) |
32 |
13 30 31
|
sylancl |
|- ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) = <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> ) |
33 |
24
|
efgmval |
|- ( ( A e. I /\ (/) e. 2o ) -> ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = <. A , ( 1o \ (/) ) >. ) |
34 |
7 11 33
|
sylancl |
|- ( ( I e. V /\ A e. I ) -> ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = <. A , ( 1o \ (/) ) >. ) |
35 |
|
df-ov |
|- ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) |
36 |
|
dif0 |
|- ( 1o \ (/) ) = 1o |
37 |
36
|
opeq2i |
|- <. A , ( 1o \ (/) ) >. = <. A , 1o >. |
38 |
34 35 37
|
3eqtr3g |
|- ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) = <. A , 1o >. ) |
39 |
38
|
s1eqd |
|- ( ( I e. V /\ A e. I ) -> <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> = <" <. A , 1o >. "> ) |
40 |
29 32 39
|
3eqtrd |
|- ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) = <" <. A , 1o >. "> ) |
41 |
40
|
eceq1d |
|- ( ( I e. V /\ A e. I ) -> [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ = [ <" <. A , 1o >. "> ] .~ ) |
42 |
6 26 41
|
3eqtrd |
|- ( ( I e. V /\ A e. I ) -> ( N ` ( U ` A ) ) = [ <" <. A , 1o >. "> ] .~ ) |