Metamath Proof Explorer


Theorem vrgpval

Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses vrgpfval.r
|- .~ = ( ~FG ` I )
vrgpfval.u
|- U = ( varFGrp ` I )
Assertion vrgpval
|- ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ )

Proof

Step Hyp Ref Expression
1 vrgpfval.r
 |-  .~ = ( ~FG ` I )
2 vrgpfval.u
 |-  U = ( varFGrp ` I )
3 1 2 vrgpfval
 |-  ( I e. V -> U = ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) )
4 3 fveq1d
 |-  ( I e. V -> ( U ` A ) = ( ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ` A ) )
5 opeq1
 |-  ( j = A -> <. j , (/) >. = <. A , (/) >. )
6 5 s1eqd
 |-  ( j = A -> <" <. j , (/) >. "> = <" <. A , (/) >. "> )
7 6 eceq1d
 |-  ( j = A -> [ <" <. j , (/) >. "> ] .~ = [ <" <. A , (/) >. "> ] .~ )
8 eqid
 |-  ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) = ( j e. I |-> [ <" <. j , (/) >. "> ] .~ )
9 1 fvexi
 |-  .~ e. _V
10 ecexg
 |-  ( .~ e. _V -> [ <" <. A , (/) >. "> ] .~ e. _V )
11 9 10 ax-mp
 |-  [ <" <. A , (/) >. "> ] .~ e. _V
12 7 8 11 fvmpt
 |-  ( A e. I -> ( ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ` A ) = [ <" <. A , (/) >. "> ] .~ )
13 4 12 sylan9eq
 |-  ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ )