| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vrgpfval.r |
|- .~ = ( ~FG ` I ) |
| 2 |
|
vrgpfval.u |
|- U = ( varFGrp ` I ) |
| 3 |
1 2
|
vrgpfval |
|- ( I e. V -> U = ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ) |
| 4 |
3
|
fveq1d |
|- ( I e. V -> ( U ` A ) = ( ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ` A ) ) |
| 5 |
|
opeq1 |
|- ( j = A -> <. j , (/) >. = <. A , (/) >. ) |
| 6 |
5
|
s1eqd |
|- ( j = A -> <" <. j , (/) >. "> = <" <. A , (/) >. "> ) |
| 7 |
6
|
eceq1d |
|- ( j = A -> [ <" <. j , (/) >. "> ] .~ = [ <" <. A , (/) >. "> ] .~ ) |
| 8 |
|
eqid |
|- ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) = ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) |
| 9 |
1
|
fvexi |
|- .~ e. _V |
| 10 |
|
ecexg |
|- ( .~ e. _V -> [ <" <. A , (/) >. "> ] .~ e. _V ) |
| 11 |
9 10
|
ax-mp |
|- [ <" <. A , (/) >. "> ] .~ e. _V |
| 12 |
7 8 11
|
fvmpt |
|- ( A e. I -> ( ( j e. I |-> [ <" <. j , (/) >. "> ] .~ ) ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
| 13 |
4 12
|
sylan9eq |
|- ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |