| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vrmdfval.u |
|- U = ( varFMnd ` I ) |
| 2 |
1
|
vrmdfval |
|- ( I e. V -> U = ( j e. I |-> <" j "> ) ) |
| 3 |
2
|
adantr |
|- ( ( I e. V /\ A e. I ) -> U = ( j e. I |-> <" j "> ) ) |
| 4 |
|
s1eq |
|- ( j = A -> <" j "> = <" A "> ) |
| 5 |
4
|
adantl |
|- ( ( ( I e. V /\ A e. I ) /\ j = A ) -> <" j "> = <" A "> ) |
| 6 |
|
simpr |
|- ( ( I e. V /\ A e. I ) -> A e. I ) |
| 7 |
|
s1cl |
|- ( A e. I -> <" A "> e. Word I ) |
| 8 |
7
|
adantl |
|- ( ( I e. V /\ A e. I ) -> <" A "> e. Word I ) |
| 9 |
3 5 6 8
|
fvmptd |
|- ( ( I e. V /\ A e. I ) -> ( U ` A ) = <" A "> ) |