Metamath Proof Explorer


Theorem vscacn

Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istlm.s
|- .x. = ( .sf ` W )
istlm.j
|- J = ( TopOpen ` W )
istlm.f
|- F = ( Scalar ` W )
istlm.k
|- K = ( TopOpen ` F )
Assertion vscacn
|- ( W e. TopMod -> .x. e. ( ( K tX J ) Cn J ) )

Proof

Step Hyp Ref Expression
1 istlm.s
 |-  .x. = ( .sf ` W )
2 istlm.j
 |-  J = ( TopOpen ` W )
3 istlm.f
 |-  F = ( Scalar ` W )
4 istlm.k
 |-  K = ( TopOpen ` F )
5 1 2 3 4 istlm
 |-  ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) )
6 5 simprbi
 |-  ( W e. TopMod -> .x. e. ( ( K tX J ) Cn J ) )