| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vsfval.2 |  |-  G = ( +v ` U ) | 
						
							| 2 |  | vsfval.3 |  |-  M = ( -v ` U ) | 
						
							| 3 |  | df-vs |  |-  -v = ( /g o. +v ) | 
						
							| 4 | 3 | fveq1i |  |-  ( -v ` U ) = ( ( /g o. +v ) ` U ) | 
						
							| 5 |  | fo1st |  |-  1st : _V -onto-> _V | 
						
							| 6 |  | fof |  |-  ( 1st : _V -onto-> _V -> 1st : _V --> _V ) | 
						
							| 7 | 5 6 | ax-mp |  |-  1st : _V --> _V | 
						
							| 8 |  | fco |  |-  ( ( 1st : _V --> _V /\ 1st : _V --> _V ) -> ( 1st o. 1st ) : _V --> _V ) | 
						
							| 9 | 7 7 8 | mp2an |  |-  ( 1st o. 1st ) : _V --> _V | 
						
							| 10 |  | df-va |  |-  +v = ( 1st o. 1st ) | 
						
							| 11 | 10 | feq1i |  |-  ( +v : _V --> _V <-> ( 1st o. 1st ) : _V --> _V ) | 
						
							| 12 | 9 11 | mpbir |  |-  +v : _V --> _V | 
						
							| 13 |  | fvco3 |  |-  ( ( +v : _V --> _V /\ U e. _V ) -> ( ( /g o. +v ) ` U ) = ( /g ` ( +v ` U ) ) ) | 
						
							| 14 | 12 13 | mpan |  |-  ( U e. _V -> ( ( /g o. +v ) ` U ) = ( /g ` ( +v ` U ) ) ) | 
						
							| 15 | 4 14 | eqtrid |  |-  ( U e. _V -> ( -v ` U ) = ( /g ` ( +v ` U ) ) ) | 
						
							| 16 |  | 0ngrp |  |-  -. (/) e. GrpOp | 
						
							| 17 |  | vex |  |-  g e. _V | 
						
							| 18 | 17 | rnex |  |-  ran g e. _V | 
						
							| 19 | 18 18 | mpoex |  |-  ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) e. _V | 
						
							| 20 |  | df-gdiv |  |-  /g = ( g e. GrpOp |-> ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) ) | 
						
							| 21 | 19 20 | dmmpti |  |-  dom /g = GrpOp | 
						
							| 22 | 21 | eleq2i |  |-  ( (/) e. dom /g <-> (/) e. GrpOp ) | 
						
							| 23 | 16 22 | mtbir |  |-  -. (/) e. dom /g | 
						
							| 24 |  | ndmfv |  |-  ( -. (/) e. dom /g -> ( /g ` (/) ) = (/) ) | 
						
							| 25 | 23 24 | mp1i |  |-  ( -. U e. _V -> ( /g ` (/) ) = (/) ) | 
						
							| 26 |  | fvprc |  |-  ( -. U e. _V -> ( +v ` U ) = (/) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( -. U e. _V -> ( /g ` ( +v ` U ) ) = ( /g ` (/) ) ) | 
						
							| 28 |  | fvprc |  |-  ( -. U e. _V -> ( -v ` U ) = (/) ) | 
						
							| 29 | 25 27 28 | 3eqtr4rd |  |-  ( -. U e. _V -> ( -v ` U ) = ( /g ` ( +v ` U ) ) ) | 
						
							| 30 | 15 29 | pm2.61i |  |-  ( -v ` U ) = ( /g ` ( +v ` U ) ) | 
						
							| 31 | 1 | fveq2i |  |-  ( /g ` G ) = ( /g ` ( +v ` U ) ) | 
						
							| 32 | 30 2 31 | 3eqtr4i |  |-  M = ( /g ` G ) |