Metamath Proof Explorer


Theorem vsn

Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion vsn
|- { _V } = (/)

Proof

Step Hyp Ref Expression
1 vprc
 |-  -. _V e. _V
2 snprc
 |-  ( -. _V e. _V <-> { _V } = (/) )
3 1 2 mpbi
 |-  { _V } = (/)