Metamath Proof Explorer


Theorem vtocl2

Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Hypotheses vtocl2.1
|- A e. _V
vtocl2.2
|- B e. _V
vtocl2.3
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
vtocl2.4
|- ph
Assertion vtocl2
|- ps

Proof

Step Hyp Ref Expression
1 vtocl2.1
 |-  A e. _V
2 vtocl2.2
 |-  B e. _V
3 vtocl2.3
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
4 vtocl2.4
 |-  ph
5 4 a1i
 |-  ( y = B -> ph )
6 3 pm5.74da
 |-  ( x = A -> ( ( y = B -> ph ) <-> ( y = B -> ps ) ) )
7 1 6 5 vtocl
 |-  ( y = B -> ps )
8 5 7 2thd
 |-  ( y = B -> ( ph <-> ps ) )
9 2 8 4 vtocl
 |-  ps