Metamath Proof Explorer


Theorem vtocl2d

Description: Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020) (Revised by BTernaryTau, 19-Oct-2023)

Ref Expression
Hypotheses vtocl2d.a
|- ( ph -> A e. V )
vtocl2d.b
|- ( ph -> B e. W )
vtocl2d.1
|- ( ( x = A /\ y = B ) -> ( ps <-> ch ) )
vtocl2d.3
|- ( ph -> ps )
Assertion vtocl2d
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 vtocl2d.a
 |-  ( ph -> A e. V )
2 vtocl2d.b
 |-  ( ph -> B e. W )
3 vtocl2d.1
 |-  ( ( x = A /\ y = B ) -> ( ps <-> ch ) )
4 vtocl2d.3
 |-  ( ph -> ps )
5 4 adantr
 |-  ( ( ph /\ y = B ) -> ps )
6 3 adantll
 |-  ( ( ( ph /\ x = A ) /\ y = B ) -> ( ps <-> ch ) )
7 6 pm5.74da
 |-  ( ( ph /\ x = A ) -> ( ( y = B -> ps ) <-> ( y = B -> ch ) ) )
8 4 a1d
 |-  ( ph -> ( y = B -> ps ) )
9 1 7 8 vtocld
 |-  ( ph -> ( y = B -> ch ) )
10 9 imp
 |-  ( ( ph /\ y = B ) -> ch )
11 5 10 2thd
 |-  ( ( ph /\ y = B ) -> ( ps <-> ch ) )
12 2 11 4 vtocld
 |-  ( ph -> ch )