| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtocl2d.a |
|- ( ph -> A e. V ) |
| 2 |
|
vtocl2d.b |
|- ( ph -> B e. W ) |
| 3 |
|
vtocl2d.1 |
|- ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) |
| 4 |
|
vtocl2d.3 |
|- ( ph -> ps ) |
| 5 |
4
|
adantr |
|- ( ( ph /\ y = B ) -> ps ) |
| 6 |
3
|
adantll |
|- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ps <-> ch ) ) |
| 7 |
6
|
pm5.74da |
|- ( ( ph /\ x = A ) -> ( ( y = B -> ps ) <-> ( y = B -> ch ) ) ) |
| 8 |
4
|
a1d |
|- ( ph -> ( y = B -> ps ) ) |
| 9 |
1 7 8
|
vtocld |
|- ( ph -> ( y = B -> ch ) ) |
| 10 |
9
|
imp |
|- ( ( ph /\ y = B ) -> ch ) |
| 11 |
5 10
|
2thd |
|- ( ( ph /\ y = B ) -> ( ps <-> ch ) ) |
| 12 |
2 11 4
|
vtocld |
|- ( ph -> ch ) |