Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocl2g
Metamath Proof Explorer
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM , 25-Apr-1995) Remove dependency on ax-10 , ax-11 , and
ax-13 . (Revised by Steven Nguyen , 29-Nov-2022)
Ref
Expression
Hypotheses
vtocl2g.1
|- ( x = A -> ( ph <-> ps ) )
vtocl2g.2
|- ( y = B -> ( ps <-> ch ) )
vtocl2g.3
|- ph
Assertion
vtocl2g
|- ( ( A e. V /\ B e. W ) -> ch )
Proof
Step
Hyp
Ref
Expression
1
vtocl2g.1
|- ( x = A -> ( ph <-> ps ) )
2
vtocl2g.2
|- ( y = B -> ( ps <-> ch ) )
3
vtocl2g.3
|- ph
4
elex
|- ( A e. V -> A e. _V )
5
2
imbi2d
|- ( y = B -> ( ( A e. _V -> ps ) <-> ( A e. _V -> ch ) ) )
6
1 3
vtoclg
|- ( A e. _V -> ps )
7
5 6
vtoclg
|- ( B e. W -> ( A e. _V -> ch ) )
8
4 7
mpan9
|- ( ( A e. V /\ B e. W ) -> ch )