| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtocl2ga.1 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 2 |  | vtocl2ga.2 |  |-  ( y = B -> ( ps <-> ch ) ) | 
						
							| 3 |  | vtocl2ga.3 |  |-  ( ( x e. C /\ y e. D ) -> ph ) | 
						
							| 4 | 2 | imbi2d |  |-  ( y = B -> ( ( A e. C -> ps ) <-> ( A e. C -> ch ) ) ) | 
						
							| 5 | 1 | imbi2d |  |-  ( x = A -> ( ( y e. D -> ph ) <-> ( y e. D -> ps ) ) ) | 
						
							| 6 | 3 | ex |  |-  ( x e. C -> ( y e. D -> ph ) ) | 
						
							| 7 | 5 6 | vtoclga |  |-  ( A e. C -> ( y e. D -> ps ) ) | 
						
							| 8 | 7 | com12 |  |-  ( y e. D -> ( A e. C -> ps ) ) | 
						
							| 9 | 4 8 | vtoclga |  |-  ( B e. D -> ( A e. C -> ch ) ) | 
						
							| 10 | 9 | impcom |  |-  ( ( A e. C /\ B e. D ) -> ch ) |