Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl2gaf.a |
|- F/_ x A |
2 |
|
vtocl2gaf.b |
|- F/_ y A |
3 |
|
vtocl2gaf.c |
|- F/_ y B |
4 |
|
vtocl2gaf.1 |
|- F/ x ps |
5 |
|
vtocl2gaf.2 |
|- F/ y ch |
6 |
|
vtocl2gaf.3 |
|- ( x = A -> ( ph <-> ps ) ) |
7 |
|
vtocl2gaf.4 |
|- ( y = B -> ( ps <-> ch ) ) |
8 |
|
vtocl2gaf.5 |
|- ( ( x e. C /\ y e. D ) -> ph ) |
9 |
2
|
nfel1 |
|- F/ y A e. C |
10 |
9 5
|
nfim |
|- F/ y ( A e. C -> ch ) |
11 |
7
|
imbi2d |
|- ( y = B -> ( ( A e. C -> ps ) <-> ( A e. C -> ch ) ) ) |
12 |
|
nfv |
|- F/ x y e. D |
13 |
12 4
|
nfim |
|- F/ x ( y e. D -> ps ) |
14 |
6
|
imbi2d |
|- ( x = A -> ( ( y e. D -> ph ) <-> ( y e. D -> ps ) ) ) |
15 |
8
|
ex |
|- ( x e. C -> ( y e. D -> ph ) ) |
16 |
1 13 14 15
|
vtoclgaf |
|- ( A e. C -> ( y e. D -> ps ) ) |
17 |
16
|
com12 |
|- ( y e. D -> ( A e. C -> ps ) ) |
18 |
3 10 11 17
|
vtoclgaf |
|- ( B e. D -> ( A e. C -> ch ) ) |
19 |
18
|
impcom |
|- ( ( A e. C /\ B e. D ) -> ch ) |