Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl2gaf.a |
|- F/_ x A |
2 |
|
vtocl2gaf.b |
|- F/_ y A |
3 |
|
vtocl2gaf.c |
|- F/_ y B |
4 |
|
vtocl2gaf.1 |
|- F/ x ps |
5 |
|
vtocl2gaf.2 |
|- F/ y ch |
6 |
|
vtocl2gaf.3 |
|- ( x = A -> ( ph <-> ps ) ) |
7 |
|
vtocl2gaf.4 |
|- ( y = B -> ( ps <-> ch ) ) |
8 |
|
vtocl2gaf.5 |
|- ( ( x e. C /\ y e. D ) -> ph ) |
9 |
1
|
nfel1 |
|- F/ x A e. C |
10 |
|
nfv |
|- F/ x y e. D |
11 |
9 10
|
nfan |
|- F/ x ( A e. C /\ y e. D ) |
12 |
11 4
|
nfim |
|- F/ x ( ( A e. C /\ y e. D ) -> ps ) |
13 |
2
|
nfel1 |
|- F/ y A e. C |
14 |
3
|
nfel1 |
|- F/ y B e. D |
15 |
13 14
|
nfan |
|- F/ y ( A e. C /\ B e. D ) |
16 |
15 5
|
nfim |
|- F/ y ( ( A e. C /\ B e. D ) -> ch ) |
17 |
|
eleq1 |
|- ( x = A -> ( x e. C <-> A e. C ) ) |
18 |
17
|
anbi1d |
|- ( x = A -> ( ( x e. C /\ y e. D ) <-> ( A e. C /\ y e. D ) ) ) |
19 |
18 6
|
imbi12d |
|- ( x = A -> ( ( ( x e. C /\ y e. D ) -> ph ) <-> ( ( A e. C /\ y e. D ) -> ps ) ) ) |
20 |
|
eleq1 |
|- ( y = B -> ( y e. D <-> B e. D ) ) |
21 |
20
|
anbi2d |
|- ( y = B -> ( ( A e. C /\ y e. D ) <-> ( A e. C /\ B e. D ) ) ) |
22 |
21 7
|
imbi12d |
|- ( y = B -> ( ( ( A e. C /\ y e. D ) -> ps ) <-> ( ( A e. C /\ B e. D ) -> ch ) ) ) |
23 |
1 2 3 12 16 19 22 8
|
vtocl2gf |
|- ( ( A e. C /\ B e. D ) -> ( ( A e. C /\ B e. D ) -> ch ) ) |
24 |
23
|
pm2.43i |
|- ( ( A e. C /\ B e. D ) -> ch ) |