Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vtocl3g.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
vtocl3g.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
vtocl3g.3 | |- ( z = C -> ( ch <-> th ) ) |
||
vtocl3g.4 | |- ph |
||
Assertion | vtocl3g | |- ( ( A e. V /\ B e. W /\ C e. X ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl3g.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
2 | vtocl3g.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
3 | vtocl3g.3 | |- ( z = C -> ( ch <-> th ) ) |
|
4 | vtocl3g.4 | |- ph |
|
5 | elex | |- ( A e. V -> A e. _V ) |
|
6 | 2 | imbi2d | |- ( y = B -> ( ( A e. _V -> ps ) <-> ( A e. _V -> ch ) ) ) |
7 | 3 | imbi2d | |- ( z = C -> ( ( A e. _V -> ch ) <-> ( A e. _V -> th ) ) ) |
8 | 1 4 | vtoclg | |- ( A e. _V -> ps ) |
9 | 6 7 8 | vtocl2g | |- ( ( B e. W /\ C e. X ) -> ( A e. _V -> th ) ) |
10 | 5 9 | mpan9 | |- ( ( A e. V /\ ( B e. W /\ C e. X ) ) -> th ) |
11 | 10 | 3impb | |- ( ( A e. V /\ B e. W /\ C e. X ) -> th ) |