| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtocl3g.1 |
|- ( x = A -> ( ph <-> ps ) ) |
| 2 |
|
vtocl3g.2 |
|- ( y = B -> ( ps <-> ch ) ) |
| 3 |
|
vtocl3g.3 |
|- ( z = C -> ( ch <-> th ) ) |
| 4 |
|
vtocl3g.4 |
|- ph |
| 5 |
|
elex |
|- ( A e. V -> A e. _V ) |
| 6 |
2
|
imbi2d |
|- ( y = B -> ( ( A e. _V -> ps ) <-> ( A e. _V -> ch ) ) ) |
| 7 |
3
|
imbi2d |
|- ( z = C -> ( ( A e. _V -> ch ) <-> ( A e. _V -> th ) ) ) |
| 8 |
1 4
|
vtoclg |
|- ( A e. _V -> ps ) |
| 9 |
6 7 8
|
vtocl2g |
|- ( ( B e. W /\ C e. X ) -> ( A e. _V -> th ) ) |
| 10 |
5 9
|
mpan9 |
|- ( ( A e. V /\ ( B e. W /\ C e. X ) ) -> th ) |
| 11 |
10
|
3impb |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> th ) |