Metamath Proof Explorer


Theorem vtocl3g

Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypotheses vtocl3g.1
|- ( x = A -> ( ph <-> ps ) )
vtocl3g.2
|- ( y = B -> ( ps <-> ch ) )
vtocl3g.3
|- ( z = C -> ( ch <-> th ) )
vtocl3g.4
|- ph
Assertion vtocl3g
|- ( ( A e. V /\ B e. W /\ C e. X ) -> th )

Proof

Step Hyp Ref Expression
1 vtocl3g.1
 |-  ( x = A -> ( ph <-> ps ) )
2 vtocl3g.2
 |-  ( y = B -> ( ps <-> ch ) )
3 vtocl3g.3
 |-  ( z = C -> ( ch <-> th ) )
4 vtocl3g.4
 |-  ph
5 elex
 |-  ( A e. V -> A e. _V )
6 2 imbi2d
 |-  ( y = B -> ( ( A e. _V -> ps ) <-> ( A e. _V -> ch ) ) )
7 3 imbi2d
 |-  ( z = C -> ( ( A e. _V -> ch ) <-> ( A e. _V -> th ) ) )
8 1 4 vtoclg
 |-  ( A e. _V -> ps )
9 6 7 8 vtocl2g
 |-  ( ( B e. W /\ C e. X ) -> ( A e. _V -> th ) )
10 5 9 mpan9
 |-  ( ( A e. V /\ ( B e. W /\ C e. X ) ) -> th )
11 10 3impb
 |-  ( ( A e. V /\ B e. W /\ C e. X ) -> th )