| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtocl3ga.1 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 2 |  | vtocl3ga.2 |  |-  ( y = B -> ( ps <-> ch ) ) | 
						
							| 3 |  | vtocl3ga.3 |  |-  ( z = C -> ( ch <-> th ) ) | 
						
							| 4 |  | vtocl3ga.4 |  |-  ( ( x e. D /\ y e. R /\ z e. S ) -> ph ) | 
						
							| 5 | 3 | imbi2d |  |-  ( z = C -> ( ( ( A e. D /\ B e. R ) -> ch ) <-> ( ( A e. D /\ B e. R ) -> th ) ) ) | 
						
							| 6 | 1 | imbi2d |  |-  ( x = A -> ( ( z e. S -> ph ) <-> ( z e. S -> ps ) ) ) | 
						
							| 7 | 2 | imbi2d |  |-  ( y = B -> ( ( z e. S -> ps ) <-> ( z e. S -> ch ) ) ) | 
						
							| 8 | 4 | 3expia |  |-  ( ( x e. D /\ y e. R ) -> ( z e. S -> ph ) ) | 
						
							| 9 | 6 7 8 | vtocl2ga |  |-  ( ( A e. D /\ B e. R ) -> ( z e. S -> ch ) ) | 
						
							| 10 | 9 | com12 |  |-  ( z e. S -> ( ( A e. D /\ B e. R ) -> ch ) ) | 
						
							| 11 | 5 10 | vtoclga |  |-  ( C e. S -> ( ( A e. D /\ B e. R ) -> th ) ) | 
						
							| 12 | 11 | impcom |  |-  ( ( ( A e. D /\ B e. R ) /\ C e. S ) -> th ) | 
						
							| 13 | 12 | 3impa |  |-  ( ( A e. D /\ B e. R /\ C e. S ) -> th ) |