Metamath Proof Explorer


Theorem vtocl3gaOLD

Description: Obsolete version of vtocl3ga as of 3-Oct-2024. (Contributed by NM, 20-Aug-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vtocl3gaOLD.1
|- ( x = A -> ( ph <-> ps ) )
vtocl3gaOLD.2
|- ( y = B -> ( ps <-> ch ) )
vtocl3gaOLD.3
|- ( z = C -> ( ch <-> th ) )
vtocl3gaOLD.4
|- ( ( x e. D /\ y e. R /\ z e. S ) -> ph )
Assertion vtocl3gaOLD
|- ( ( A e. D /\ B e. R /\ C e. S ) -> th )

Proof

Step Hyp Ref Expression
1 vtocl3gaOLD.1
 |-  ( x = A -> ( ph <-> ps ) )
2 vtocl3gaOLD.2
 |-  ( y = B -> ( ps <-> ch ) )
3 vtocl3gaOLD.3
 |-  ( z = C -> ( ch <-> th ) )
4 vtocl3gaOLD.4
 |-  ( ( x e. D /\ y e. R /\ z e. S ) -> ph )
5 nfcv
 |-  F/_ x A
6 nfcv
 |-  F/_ y A
7 nfcv
 |-  F/_ z A
8 nfcv
 |-  F/_ y B
9 nfcv
 |-  F/_ z B
10 nfcv
 |-  F/_ z C
11 nfv
 |-  F/ x ps
12 nfv
 |-  F/ y ch
13 nfv
 |-  F/ z th
14 5 6 7 8 9 10 11 12 13 1 2 3 4 vtocl3gaf
 |-  ( ( A e. D /\ B e. R /\ C e. S ) -> th )