Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl3gaf.a |
|- F/_ x A |
2 |
|
vtocl3gaf.b |
|- F/_ y A |
3 |
|
vtocl3gaf.c |
|- F/_ z A |
4 |
|
vtocl3gaf.d |
|- F/_ y B |
5 |
|
vtocl3gaf.e |
|- F/_ z B |
6 |
|
vtocl3gaf.f |
|- F/_ z C |
7 |
|
vtocl3gaf.1 |
|- F/ x ps |
8 |
|
vtocl3gaf.2 |
|- F/ y ch |
9 |
|
vtocl3gaf.3 |
|- F/ z th |
10 |
|
vtocl3gaf.4 |
|- ( x = A -> ( ph <-> ps ) ) |
11 |
|
vtocl3gaf.5 |
|- ( y = B -> ( ps <-> ch ) ) |
12 |
|
vtocl3gaf.6 |
|- ( z = C -> ( ch <-> th ) ) |
13 |
|
vtocl3gaf.7 |
|- ( ( x e. R /\ y e. S /\ z e. T ) -> ph ) |
14 |
1
|
nfel1 |
|- F/ x A e. R |
15 |
|
nfv |
|- F/ x y e. S |
16 |
|
nfv |
|- F/ x z e. T |
17 |
14 15 16
|
nf3an |
|- F/ x ( A e. R /\ y e. S /\ z e. T ) |
18 |
17 7
|
nfim |
|- F/ x ( ( A e. R /\ y e. S /\ z e. T ) -> ps ) |
19 |
2
|
nfel1 |
|- F/ y A e. R |
20 |
4
|
nfel1 |
|- F/ y B e. S |
21 |
|
nfv |
|- F/ y z e. T |
22 |
19 20 21
|
nf3an |
|- F/ y ( A e. R /\ B e. S /\ z e. T ) |
23 |
22 8
|
nfim |
|- F/ y ( ( A e. R /\ B e. S /\ z e. T ) -> ch ) |
24 |
3
|
nfel1 |
|- F/ z A e. R |
25 |
5
|
nfel1 |
|- F/ z B e. S |
26 |
6
|
nfel1 |
|- F/ z C e. T |
27 |
24 25 26
|
nf3an |
|- F/ z ( A e. R /\ B e. S /\ C e. T ) |
28 |
27 9
|
nfim |
|- F/ z ( ( A e. R /\ B e. S /\ C e. T ) -> th ) |
29 |
|
eleq1 |
|- ( x = A -> ( x e. R <-> A e. R ) ) |
30 |
29
|
3anbi1d |
|- ( x = A -> ( ( x e. R /\ y e. S /\ z e. T ) <-> ( A e. R /\ y e. S /\ z e. T ) ) ) |
31 |
30 10
|
imbi12d |
|- ( x = A -> ( ( ( x e. R /\ y e. S /\ z e. T ) -> ph ) <-> ( ( A e. R /\ y e. S /\ z e. T ) -> ps ) ) ) |
32 |
|
eleq1 |
|- ( y = B -> ( y e. S <-> B e. S ) ) |
33 |
32
|
3anbi2d |
|- ( y = B -> ( ( A e. R /\ y e. S /\ z e. T ) <-> ( A e. R /\ B e. S /\ z e. T ) ) ) |
34 |
33 11
|
imbi12d |
|- ( y = B -> ( ( ( A e. R /\ y e. S /\ z e. T ) -> ps ) <-> ( ( A e. R /\ B e. S /\ z e. T ) -> ch ) ) ) |
35 |
|
eleq1 |
|- ( z = C -> ( z e. T <-> C e. T ) ) |
36 |
35
|
3anbi3d |
|- ( z = C -> ( ( A e. R /\ B e. S /\ z e. T ) <-> ( A e. R /\ B e. S /\ C e. T ) ) ) |
37 |
36 12
|
imbi12d |
|- ( z = C -> ( ( ( A e. R /\ B e. S /\ z e. T ) -> ch ) <-> ( ( A e. R /\ B e. S /\ C e. T ) -> th ) ) ) |
38 |
1 2 3 4 5 6 18 23 28 31 34 37 13
|
vtocl3gf |
|- ( ( A e. R /\ B e. S /\ C e. T ) -> ( ( A e. R /\ B e. S /\ C e. T ) -> th ) ) |
39 |
38
|
pm2.43i |
|- ( ( A e. R /\ B e. S /\ C e. T ) -> th ) |