Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl3gf.a |
|- F/_ x A |
2 |
|
vtocl3gf.b |
|- F/_ y A |
3 |
|
vtocl3gf.c |
|- F/_ z A |
4 |
|
vtocl3gf.d |
|- F/_ y B |
5 |
|
vtocl3gf.e |
|- F/_ z B |
6 |
|
vtocl3gf.f |
|- F/_ z C |
7 |
|
vtocl3gf.1 |
|- F/ x ps |
8 |
|
vtocl3gf.2 |
|- F/ y ch |
9 |
|
vtocl3gf.3 |
|- F/ z th |
10 |
|
vtocl3gf.4 |
|- ( x = A -> ( ph <-> ps ) ) |
11 |
|
vtocl3gf.5 |
|- ( y = B -> ( ps <-> ch ) ) |
12 |
|
vtocl3gf.6 |
|- ( z = C -> ( ch <-> th ) ) |
13 |
|
vtocl3gf.7 |
|- ph |
14 |
|
elex |
|- ( A e. V -> A e. _V ) |
15 |
2
|
nfel1 |
|- F/ y A e. _V |
16 |
15 8
|
nfim |
|- F/ y ( A e. _V -> ch ) |
17 |
3
|
nfel1 |
|- F/ z A e. _V |
18 |
17 9
|
nfim |
|- F/ z ( A e. _V -> th ) |
19 |
11
|
imbi2d |
|- ( y = B -> ( ( A e. _V -> ps ) <-> ( A e. _V -> ch ) ) ) |
20 |
12
|
imbi2d |
|- ( z = C -> ( ( A e. _V -> ch ) <-> ( A e. _V -> th ) ) ) |
21 |
1 7 10 13
|
vtoclgf |
|- ( A e. _V -> ps ) |
22 |
4 5 6 16 18 19 20 21
|
vtocl2gf |
|- ( ( B e. W /\ C e. X ) -> ( A e. _V -> th ) ) |
23 |
14 22
|
mpan9 |
|- ( ( A e. V /\ ( B e. W /\ C e. X ) ) -> th ) |
24 |
23
|
3impb |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> th ) |