| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtocl4g.1 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 2 |  | vtocl4g.2 |  |-  ( y = B -> ( ps <-> ch ) ) | 
						
							| 3 |  | vtocl4g.3 |  |-  ( z = C -> ( ch <-> rh ) ) | 
						
							| 4 |  | vtocl4g.4 |  |-  ( w = D -> ( rh <-> th ) ) | 
						
							| 5 |  | vtocl4g.5 |  |-  ph | 
						
							| 6 | 3 | imbi2d |  |-  ( z = C -> ( ( ( A e. Q /\ B e. R ) -> ch ) <-> ( ( A e. Q /\ B e. R ) -> rh ) ) ) | 
						
							| 7 | 4 | imbi2d |  |-  ( w = D -> ( ( ( A e. Q /\ B e. R ) -> rh ) <-> ( ( A e. Q /\ B e. R ) -> th ) ) ) | 
						
							| 8 | 1 2 5 | vtocl2g |  |-  ( ( A e. Q /\ B e. R ) -> ch ) | 
						
							| 9 | 6 7 8 | vtocl2g |  |-  ( ( C e. S /\ D e. T ) -> ( ( A e. Q /\ B e. R ) -> th ) ) | 
						
							| 10 | 9 | impcom |  |-  ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) |