Metamath Proof Explorer


Theorem vtoclb

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993)

Ref Expression
Hypotheses vtoclb.1
|- A e. _V
vtoclb.2
|- ( x = A -> ( ph <-> ch ) )
vtoclb.3
|- ( x = A -> ( ps <-> th ) )
vtoclb.4
|- ( ph <-> ps )
Assertion vtoclb
|- ( ch <-> th )

Proof

Step Hyp Ref Expression
1 vtoclb.1
 |-  A e. _V
2 vtoclb.2
 |-  ( x = A -> ( ph <-> ch ) )
3 vtoclb.3
 |-  ( x = A -> ( ps <-> th ) )
4 vtoclb.4
 |-  ( ph <-> ps )
5 2 3 bibi12d
 |-  ( x = A -> ( ( ph <-> ps ) <-> ( ch <-> th ) ) )
6 1 5 4 vtocl
 |-  ( ch <-> th )