Metamath Proof Explorer


Theorem vtoclbg

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994)

Ref Expression
Hypotheses vtoclbg.1
|- ( x = A -> ( ph <-> ch ) )
vtoclbg.2
|- ( x = A -> ( ps <-> th ) )
vtoclbg.3
|- ( ph <-> ps )
Assertion vtoclbg
|- ( A e. V -> ( ch <-> th ) )

Proof

Step Hyp Ref Expression
1 vtoclbg.1
 |-  ( x = A -> ( ph <-> ch ) )
2 vtoclbg.2
 |-  ( x = A -> ( ps <-> th ) )
3 vtoclbg.3
 |-  ( ph <-> ps )
4 1 2 bibi12d
 |-  ( x = A -> ( ( ph <-> ps ) <-> ( ch <-> th ) ) )
5 4 3 vtoclg
 |-  ( A e. V -> ( ch <-> th ) )