Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocld
Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro , 15-Oct-2016) Avoid ax-10 , ax-11 , ax-12 .
(Revised by SN , 2-Sep-2024)
Ref
Expression
Hypotheses
vtocld.1
|- ( ph -> A e. V )
vtocld.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
vtocld.3
|- ( ph -> ps )
Assertion
vtocld
|- ( ph -> ch )
Proof
Step
Hyp
Ref
Expression
1
vtocld.1
|- ( ph -> A e. V )
2
vtocld.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3
vtocld.3
|- ( ph -> ps )
4
elisset
|- ( A e. V -> E. x x = A )
5
1 4
syl
|- ( ph -> E. x x = A )
6
3
adantr
|- ( ( ph /\ x = A ) -> ps )
7
6 2
mpbid
|- ( ( ph /\ x = A ) -> ch )
8
5 7
exlimddv
|- ( ph -> ch )