Metamath Proof Explorer


Theorem vtocldf

Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses vtocld.1
|- ( ph -> A e. V )
vtocld.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
vtocld.3
|- ( ph -> ps )
vtocldf.4
|- F/ x ph
vtocldf.5
|- ( ph -> F/_ x A )
vtocldf.6
|- ( ph -> F/ x ch )
Assertion vtocldf
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 vtocld.1
 |-  ( ph -> A e. V )
2 vtocld.2
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3 vtocld.3
 |-  ( ph -> ps )
4 vtocldf.4
 |-  F/ x ph
5 vtocldf.5
 |-  ( ph -> F/_ x A )
6 vtocldf.6
 |-  ( ph -> F/ x ch )
7 2 ex
 |-  ( ph -> ( x = A -> ( ps <-> ch ) ) )
8 4 7 alrimi
 |-  ( ph -> A. x ( x = A -> ( ps <-> ch ) ) )
9 4 3 alrimi
 |-  ( ph -> A. x ps )
10 vtoclgft
 |-  ( ( ( F/_ x A /\ F/ x ch ) /\ ( A. x ( x = A -> ( ps <-> ch ) ) /\ A. x ps ) /\ A e. V ) -> ch )
11 5 6 8 9 1 10 syl221anc
 |-  ( ph -> ch )