Metamath Proof Explorer


Theorem vtoclef

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypotheses vtoclef.1
|- F/ x ph
vtoclef.2
|- A e. _V
vtoclef.3
|- ( x = A -> ph )
Assertion vtoclef
|- ph

Proof

Step Hyp Ref Expression
1 vtoclef.1
 |-  F/ x ph
2 vtoclef.2
 |-  A e. _V
3 vtoclef.3
 |-  ( x = A -> ph )
4 2 isseti
 |-  E. x x = A
5 1 3 exlimi
 |-  ( E. x x = A -> ph )
6 4 5 ax-mp
 |-  ph