Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclef.1 |
|- F/ x ph |
|
|
vtoclef.2 |
|- A e. _V |
|
|
vtoclef.3 |
|- ( x = A -> ph ) |
|
Assertion |
vtoclef |
|- ph |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclef.1 |
|- F/ x ph |
2 |
|
vtoclef.2 |
|- A e. _V |
3 |
|
vtoclef.3 |
|- ( x = A -> ph ) |
4 |
2
|
isseti |
|- E. x x = A |
5 |
1 3
|
exlimi |
|- ( E. x x = A -> ph ) |
6 |
4 5
|
ax-mp |
|- ph |