Metamath Proof Explorer


Theorem vtocleg

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis vtocleg.1
|- ( x = A -> ph )
Assertion vtocleg
|- ( A e. V -> ph )

Proof

Step Hyp Ref Expression
1 vtocleg.1
 |-  ( x = A -> ph )
2 elisset
 |-  ( A e. V -> E. x x = A )
3 1 exlimiv
 |-  ( E. x x = A -> ph )
4 2 3 syl
 |-  ( A e. V -> ph )