Metamath Proof Explorer


Theorem vtoclegft

Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef .) (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Assertion vtoclegft
|- ( ( A e. B /\ F/ x ph /\ A. x ( x = A -> ph ) ) -> ph )

Proof

Step Hyp Ref Expression
1 elisset
 |-  ( A e. B -> E. x x = A )
2 exim
 |-  ( A. x ( x = A -> ph ) -> ( E. x x = A -> E. x ph ) )
3 1 2 mpan9
 |-  ( ( A e. B /\ A. x ( x = A -> ph ) ) -> E. x ph )
4 3 3adant2
 |-  ( ( A e. B /\ F/ x ph /\ A. x ( x = A -> ph ) ) -> E. x ph )
5 19.9t
 |-  ( F/ x ph -> ( E. x ph <-> ph ) )
6 5 3ad2ant2
 |-  ( ( A e. B /\ F/ x ph /\ A. x ( x = A -> ph ) ) -> ( E. x ph <-> ph ) )
7 4 6 mpbid
 |-  ( ( A e. B /\ F/ x ph /\ A. x ( x = A -> ph ) ) -> ph )