Step |
Hyp |
Ref |
Expression |
1 |
|
biidd |
|- ( x = A -> ( ph <-> ph ) ) |
2 |
1
|
ax-gen |
|- A. x ( x = A -> ( ph <-> ph ) ) |
3 |
|
ceqsalt |
|- ( ( F/ x ph /\ A. x ( x = A -> ( ph <-> ph ) ) /\ A e. B ) -> ( A. x ( x = A -> ph ) <-> ph ) ) |
4 |
2 3
|
mp3an2 |
|- ( ( F/ x ph /\ A e. B ) -> ( A. x ( x = A -> ph ) <-> ph ) ) |
5 |
4
|
ancoms |
|- ( ( A e. B /\ F/ x ph ) -> ( A. x ( x = A -> ph ) <-> ph ) ) |
6 |
5
|
biimpd |
|- ( ( A e. B /\ F/ x ph ) -> ( A. x ( x = A -> ph ) -> ph ) ) |
7 |
6
|
3impia |
|- ( ( A e. B /\ F/ x ph /\ A. x ( x = A -> ph ) ) -> ph ) |