Metamath Proof Explorer


Theorem vtoclf

Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar . (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypotheses vtoclf.1
|- F/ x ps
vtoclf.2
|- A e. _V
vtoclf.3
|- ( x = A -> ( ph <-> ps ) )
vtoclf.4
|- ph
Assertion vtoclf
|- ps

Proof

Step Hyp Ref Expression
1 vtoclf.1
 |-  F/ x ps
2 vtoclf.2
 |-  A e. _V
3 vtoclf.3
 |-  ( x = A -> ( ph <-> ps ) )
4 vtoclf.4
 |-  ph
5 2 isseti
 |-  E. x x = A
6 3 biimpd
 |-  ( x = A -> ( ph -> ps ) )
7 5 6 eximii
 |-  E. x ( ph -> ps )
8 1 7 19.36i
 |-  ( A. x ph -> ps )
9 8 4 mpg
 |-  ps